GAN生成对抗网络学习笔记

00. 概念

GAN,全称为 Generative Adversarial Nets,直译为生成式对抗网络,是一种非监督式模型。
2014年由Ian Goodfellow提出,业内另一位大牛 Yan Lecun 也对它交口称赞,称其为“20 年来机器学习领域最酷的想法” ,至今为止GAN依然是炙手可热的研究方向。
“生成对抗网络是一种生成模型(Generative Model),其背后基本思想是从训练库里获取很多训练样本,从而学习这些训练案例生成的概率分布。
而实现的方法,是让两个网络相互竞争,‘玩一个游戏’。其中一个叫做生成器网络( Generator Network),它不断捕捉训练库里真实图片的概率分布,将输入的随机噪声(Random Noise)转变成新的样本(也就是假数据)。另一个叫做判别器网络(Discriminator Network),它可以同时观察真实和假造的数据,判断这个数据到底是不是真的。”
--- Ian Goodfellow

Ian Goodfellow
GAN模型原理图

01. 例子

生成sin 正玄曲线(使用keras)

import os
import random
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from tqdm import tqdm_notebook as tqdm
from keras.models import Model
from keras.layers import Input, Reshape
from keras.layers.core import Dense, Activation, Dropout, Flatten
from keras.layers.normalization import BatchNormalization
from keras.layers.convolutional import UpSampling1D, Conv1D
from keras.layers.advanced_activations import LeakyReLU
from keras.optimizers import Adam, SGD
from keras.callbacks import TensorBoard
  1. Generative model:
    输入:noise data
    输出:尝试生成真实的 sin 数据
def get_generative(G_in, dense_dim=200, out_dim=50, lr=1e-3):
    x = Dense(dense_dim)(G_in)
    x = Activation('tanh')(x)
    G_out = Dense(out_dim, activation='tanh')(x)
    G = Model(G_in, G_out)
    opt = SGD(lr=lr)
    G.compile(loss='binary_crossentropy', optimizer=opt)
    return G, G_out
  1. Discriminative model:
    输出:识别此数据是真实的,还是由 Generative model 生成的
def get_discriminative(D_in, lr=1e-3, drate=.25, n_channels=50, conv_sz=5, leak=.2):
    x = Reshape((-1, 1))(D_in)
    x = Conv1D(n_channels, conv_sz, activation='relu')(x)
    x = Dropout(drate)(x)
    x = Flatten()(x)
    x = Dense(n_channels)(x)
    D_out = Dense(2, activation='sigmoid')(x)
    D = Model(D_in, D_out)
    dopt = Adam(lr=lr)
    D.compile(loss='binary_crossentropy', optimizer=dopt)
    return D, D_out
  1. chain the two models into a GAN:
    set_trainability 的作用是每次训练 generator 时要冻住 discriminator。
def set_trainability(model, trainable=False):
    model.trainable = trainable
    for layer in model.layers:
        layer.trainable = trainable

def make_gan(GAN_in, G, D):
    set_trainability(D, False)
    x = G(GAN_in)
    GAN_out = D(x)
    GAN = Model(GAN_in, GAN_out)
    GAN.compile(loss='binary_crossentropy', optimizer=G.optimizer)
    return GAN, GAN_out
  1. Training:
    交替训练 discriminator 和 chained GAN,在训练 chained GAN 时要冻住 discriminator 的参数:
交替训练 discriminator 和 chained GAN
def sample_noise(G, noise_dim=10, n_samples=10000):
    X = np.random.uniform(0, 1, size=[n_samples, noise_dim])
    y = np.zeros((n_samples, 2))
    y[:, 1] = 1
    return X, y

def train(GAN, G, D, epochs=500, n_samples=10000, noise_dim=10, batch_size=32, verbose=False, v_freq=50):
    d_loss = []
    g_loss = []
    e_range = range(epochs)
    if verbose:
        e_range = tqdm(e_range)
    for epoch in e_range:
        X, y = sample_data_and_gen(G, n_samples=n_samples, noise_dim=noise_dim)
        set_trainability(D, True)
        d_loss.append(D.train_on_batch(X, y))

        X, y = sample_noise(G, n_samples=n_samples, noise_dim=noise_dim)
        set_trainability(D, False)
        g_loss.append(GAN.train_on_batch(X, y))
        if verbose and (epoch + 1) % v_freq == 0:
            print("Epoch #{}: Generative Loss: {}, Discriminative Loss: {}".format(epoch + 1, g_loss[-1], d_loss[-1]))
    return d_loss, g_loss

d_loss, g_loss = train(GAN, G, D, verbose=True)
  1. Results:
N_VIEWED_SAMPLES = 2
data_and_gen, _ = sample_data_and_gen(G, n_samples=N_VIEWED_SAMPLES)
pd.DataFrame(np.transpose(data_and_gen[N_VIEWED_SAMPLES:])).rolling(5).mean()[5:].plot()
训练结果图
  1. 后记

这篇文章是在微信公号里看到的,原链接如下:https://mp.weixin.qq.com/s/8vw5LpOPAnNKQmQ_ck-oWg
但是原文中的代码和描述并不完整,原作者是Robin Ricard的blog中翻译的,详细内容参见这篇文章:http://www.rricard.me/machine/learning/generative/adversarial/networks/keras/tensorflow/2017/04/05/gans-part2.html
我把代码重新整理了一下,做在 jupyter笔记中,这个是可以运行的代码(python3,tensorflow>=1.0,keras>=2.0),如果需要发邮件索取(我的邮箱582711548@qq.com)。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 201,784评论 5 474
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 84,745评论 2 378
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 148,702评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,229评论 1 272
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,245评论 5 363
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,376评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,798评论 3 393
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,471评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,655评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,485评论 2 318
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,535评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,235评论 3 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,793评论 3 304
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,863评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,096评论 1 258
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,654评论 2 348
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,233评论 2 341

推荐阅读更多精彩内容