1.【重拾View(一)】——setContentView()源码解析
2.【重拾View(二)】——LayoutInflater源码解析
3.【重拾View(三)】——LayoutInflater中Factory源码解析
前言
看了前一篇文章【重拾View(一)】——setContentView()源码解析我们了解到了Activity加载布局到过程,但是对于View的创建过程还需要进一步的了解。熟悉Android的应该都清楚,Android布局的一大特点就是XML文件,我们通过编写XML文件,便可以轻松的创建我们需要的View,这也是和IOS开发的一个很大的区别。但是当我们编写完一个XML文件,还需要生成对应可绘制的View对象,这时我们经常使用的方法便是LayoutInflater的inflate()
方法。无论是我们自定义View通过还是Fragment还是我们上篇文章分析的Activity加载布局的过程,实质都是使用这种方式创建View。所以本篇博客便对LayoutInflater的源码进行分析。
创建对象
要获取LayoutInflater对象我们经常使用的有三种方式:
- Context.getSystemService(Context.LAYOUT_INFLATER_SERVICE) ;
- LayoutInflater.from(context);
- Activity.getLayoutInflater();
public static LayoutInflater from(Context context) {
LayoutInflater LayoutInflater =
(LayoutInflater) context.getSystemService(Context.LAYOUT_INFLATER_SERVICE);
if (LayoutInflater == null) {
throw new AssertionError("LayoutInflater not found.");
}
return LayoutInflater;
}
//Activity.java
@NonNull
public LayoutInflater getLayoutInflater() {
return getWindow().getLayoutInflater();
}
//PhoneWindow.java
@Override
public LayoutInflater getLayoutInflater() {
return mLayoutInflater;
}
public PhoneWindow(Context context) {
super(context);
mLayoutInflater = LayoutInflater.from(context);
}
通过上面的源码,其实我们可以发现上面三种方式的最终效果都是context.getSystemService(Context.LAYOUT_INFLATER_SERVICE);
inflate源码分析
我们最常用的inflate
方法其实有两种
public View inflate(@LayoutRes int resource, @Nullable ViewGroup root) {
return inflate(resource, root, root != null);
}
public View inflate(@LayoutRes int resource, @Nullable ViewGroup root, boolean attachToRoot) {
final Resources res = getContext().getResources();
if (DEBUG) {
Log.d(TAG, "INFLATING from resource: \"" + res.getResourceName(resource) + "\" ("
+ Integer.toHexString(resource) + ")");
}
//获取xml解析器
final XmlResourceParser parser = res.getLayout(resource);
try {
//解析xml文件
return inflate(parser, root, attachToRoot);
} finally {
parser.close();
}
}
可以看到inflate方法其实就是做了两步:
- 创建XML解析器
- 解析XML文件成View并返回
这里面我们要注意一下三个参数的传参,第一个当然就是我们的XML的id,第二个一般是我们传入的父View,第三个boolean注意当默认我们没有传值的时候,默认是root != null
,也就是父View不为空则是true
,为空便是false
。
接下来我们来看一下inflate方法源码,看看是怎么解析xml文件的。
public View inflate(XmlPullParser parser, @Nullable ViewGroup root, boolean attachToRoot) {
//1.线程同步
synchronized (mConstructorArgs) {
Trace.traceBegin(Trace.TRACE_TAG_VIEW, "inflate");
final Context inflaterContext = mContext;
final AttributeSet attrs = Xml.asAttributeSet(parser);
Context lastContext = (Context) mConstructorArgs[0];
mConstructorArgs[0] = inflaterContext;
//2.首先将root设置为result
View result = root;
try {
// Look for the root node.
int type;
//3.遍历寻找布局的根结点
while ((type = parser.next()) != XmlPullParser.START_TAG &&
type != XmlPullParser.END_DOCUMENT) {
// Empty
}
//4.如果找到的不是根结点,则异常
if (type != XmlPullParser.START_TAG) {
throw new InflateException(parser.getPositionDescription()
+ ": No start tag found!");
}
//5.获取根结点的名称
final String name = parser.getName();
if (DEBUG) {
System.out.println("**************************");
System.out.println("Creating root view: "
+ name);
System.out.println("**************************");
}
//6.如果是merge节点
if (TAG_MERGE.equals(name)) {
//root不能为null,attachToRoot不能为false
if (root == null || !attachToRoot) {
throw new InflateException("<merge /> can be used only with a valid "
+ "ViewGroup root and attachToRoot=true");
}
//7.解析merge节点下的
rInflate(parser, root, inflaterContext, attrs, false);
} else {
// Temp is the root view that was found in the xml
//8.根据解析得到的节点名创建View
final View temp = createViewFromTag(root, name, inflaterContext, attrs);
ViewGroup.LayoutParams params = null;
if (root != null) {
if (DEBUG) {
System.out.println("Creating params from root: " +
root);
}
// Create layout params that match root, if supplied
//9.根据父View创建LayoutParams
params = root.generateLayoutParams(attrs);
if (!attachToRoot) {
// Set the layout params for temp if we are not
// attaching. (If we are, we use addView, below)
//10.如果不是attachToRoot,则将LayoutParam设置给View的属性中
temp.setLayoutParams(params);
}
}
if (DEBUG) {
System.out.println("-----> start inflating children");
}
// Inflate all children under temp against its context.
//11.递归解析子布局
rInflateChildren(parser, temp, attrs, true);
if (DEBUG) {
System.out.println("-----> done inflating children");
}
// We are supposed to attach all the views we found (int temp)
// to root. Do that now.
if (root != null && attachToRoot) {
//12.root不为null,并且attachToRoot,则将View加入到父View中,并将LayoutParams设置
root.addView(temp, params);
}
// Decide whether to return the root that was passed in or the
// top view found in xml.
if (root == null || !attachToRoot) {
//13.如果root为null或者attachToRoot为false,则返回解析得到的View
result = temp;
}
}
} catch (XmlPullParserException e) {
final InflateException ie = new InflateException(e.getMessage(), e);
ie.setStackTrace(EMPTY_STACK_TRACE);
throw ie;
} catch (Exception e) {
final InflateException ie = new InflateException(parser.getPositionDescription()
+ ": " + e.getMessage(), e);
ie.setStackTrace(EMPTY_STACK_TRACE);
throw ie;
} finally {
// Don't retain static reference on context.
mConstructorArgs[0] = lastContext;
mConstructorArgs[1] = null;
Trace.traceEnd(Trace.TRACE_TAG_VIEW);
}
//14.返回解析得到的View或者父View
return result;
}
}
首先可以看到,inflate方法是做了线程同步的,为了保证线程安全。紧接着在注释2处可以看到,首先将rootView
赋值给了result
,所以这里我们需要明白:
有时候我们通过
inflate
方法加载的xml文件得到的View不一定是我们xml中的父布局,可能是我们传入的rootView
,如果不明白这个,轻易的就将View强转成我们认为的xml中的父布局,便会产生类型转换异常。
接下来的注释3和注释4可以一起理解,是对于XML文件的规则的校验,可以看到这里通过while
循环查找布局中的根结点,当没找到规定的根结点,在注释4处当然便会抛没有找到根结点的异常。
紧接着在注释5处可以看到在找到根结点后,通过getName
方法获取根结点的名称,这时我们在注释6处就有一个关键的判断了,是关于对于merge
结点的判断逻辑。
if (TAG_MERGE.equals(name)) {
//root不能为null,attachToRoot不能为false
if (root == null || !attachToRoot) {
throw new InflateException("<merge /> can be used only with a valid "
+ "ViewGroup root and attachToRoot=true");
}
//7。解析merge节点下的
rInflate(parser, root, inflaterContext, attrs, false);
}
这里可以看到如果xml
的根结点是merge
标签,下面有两个非常重要的判断条件,root==null|| !attachToRoot,当条件成立,便会抛出我们使用merge
标签经常遇到的异常。这里细化分析一下,我们root
和attachToRoot
有多种可能。
- 没有传attachToRoot
1.1 root=null,则attachToRoot为false
》这时会抛异常
1.2 root!=null,则attahcToRoot为true
》允许解析merge标签
2.传入了attachToRoot
2.1 root=null,attachToRoot=true
》抛异常
2.2 roo!=null,attachToRoot=true
》允许解析merge标签
2.3 root=null,attachToRoot=false
》抛异常
2.4 root!=null,attachToRoot=false
》抛异常
这时这个逻辑就比较清晰了,当我们使用merge
标签时,我们的root
一定不能传入null
,attahToRoot
要不不传,传入只能传入true
,所以这时就可以证明我们使用merge
标签的规则了:
使用merge标签必须有父布局,并且attachToRoot一定为true
当完成这个判断后面便执行rInflate(parser, root, inflaterContext, attrs, false);
方法,解析merge
标签下的布局。关于rInflate
方法后面我们后面再分析。
final View temp = createViewFromTag(root, name, inflaterContext, attrs);
当我们的根布局不是一个merge
标签,这时在注释8处,便通过createViewFromTag
方法将我们传入的xml中的父布局创建出了我们需要的View
对象。关于createViewFromTag
后面我们再分析。
当创建完父布局的View后,接下来还是和root
和attachToRoot
绕弯弯。
if (root != null) {
if (DEBUG) {
System.out.println("Creating params from root: " +
root);
}
// Create layout params that match root, if supplied
//9。根据父View创建LayoutParams
params = root.generateLayoutParams(attrs);
if (!attachToRoot) {
// Set the layout params for temp if we are not
// attaching. (If we are, we use addView, below)
//10。如果不是attachToRoot,则将LayoutParam设置给View的属性中
temp.setLayoutParams(params);
}
}
有了上面分析的基础这里思路就比较清晰了,可以看到当root
不为null,并且attachToRoot
为false,则将根据root创建的LayoutParams设置给创建出来的View
-temp。所以当root
不为null的情况,当我们传入attachToRoot=false
,则会把root
的LayoutParam
设置给创建出来的TempView
,当传入的attachToRoot=true
,则此处不会设置(注意是此处!)。
紧接着在注释11处,解析完根结点后,调用rInflateChildren
方法递归开始解析子布局。
final void rInflateChildren(XmlPullParser parser, View parent, AttributeSet attrs,
boolean finishInflate) throws XmlPullParserException, IOException {
rInflate(parser, parent, parent.getContext(), attrs, finishInflate);
}
其实可以看到rInflateChildren
方法实质调用的还是rInflate
方法,所以后面我们会一起分析。
if (root != null && attachToRoot) {
//12。root不为null,并且attachToRoot,则将View加入到父View中,并将LayoutParams设置
root.addView(temp, params);
}
// Decide whether to return the root that was passed in or the
// top view found in xml.
if (root == null || !attachToRoot) {
//13。如果root为null或者attachToRoot为false,则返回解析得到的View
result = temp;
}
这时会看到一个很重要的一点,又和root
和attachToRoot
这两个变量打交道了,不仔细梳理的话很容易被这两个变量搞混乱。这里看到如果root不为null,并且attachToRoot,则将View加入到父View中,并将LayoutParams设置(在addView中会设置)。并且如果root为null或者attachToRoot为false,会将result设置为解析的temp,则返回解析得到的View(最初是将root设置给了result)。
到此我们的infalte
方法其实已经分析完了,这里我们可以梳理一下关于root
和attachToRoot
的逻辑。
- root为null
》如果root为null,则返回的就是xml中的父布局,并且该View也是没有LayoutParams参数 - root不为null
2.1 attachToRoot=true
》返回的是root,此时xml已经被加入到了rootView中
2.2 attachToRoot=false
》返回的是xml的父布局,但是此时xml的父布局没有被加入到root中,只是一个单纯的View,但是它有LayoutParams,是root类型的LayoutParams.
rInflate方法解析
void rInflate(XmlPullParser parser, View parent, Context context,
AttributeSet attrs, boolean finishInflate) throws XmlPullParserException, IOException {
//获取深度
final int depth = parser.getDepth();
int type;
boolean pendingRequestFocus = false;
while (((type = parser.next()) != XmlPullParser.END_TAG ||
parser.getDepth() > depth) && type != XmlPullParser.END_DOCUMENT) {
if (type != XmlPullParser.START_TAG) {
continue;
}
final String name = parser.getName();
if (TAG_REQUEST_FOCUS.equals(name)) {
pendingRequestFocus = true;
consumeChildElements(parser);
} else if (TAG_TAG.equals(name)) {
//1。解析tag标签,也就是View.setTag
parseViewTag(parser, parent, attrs);
} else if (TAG_INCLUDE.equals(name)) {
//2。解析include标签
if (parser.getDepth() == 0) {
throw new InflateException("<include /> cannot be the root element");
}
parseInclude(parser, context, parent, attrs);
} else if (TAG_MERGE.equals(name)) {
//3。merge必须为根结点
throw new InflateException("<merge /> must be the root element");
} else {
//4。创建当前节点的View
final View view = createViewFromTag(parent, name, context, attrs);
final ViewGroup viewGroup = (ViewGroup) parent;
final ViewGroup.LayoutParams params = viewGroup.generateLayoutParams(attrs);
//递归深度继续解析
rInflateChildren(parser, view, attrs, true);
viewGroup.addView(view, params);
}
}
if (pendingRequestFocus) {
parent.restoreDefaultFocus();
}
if (finishInflate) {
parent.onFinishInflate();
}
}
可以看到这里,首先获取xml的深度,然后依旧是while
循环解析,所以下面就是各种标签情况的处理了。
首先看到注释1处,可以看到是对于tag
标签到解析,当时tag
标签,则调用parseViewTag
方法。
private void parseViewTag(XmlPullParser parser, View view, AttributeSet attrs)
throws XmlPullParserException, IOException {
final Context context = view.getContext();
final TypedArray ta = context.obtainStyledAttributes(attrs, R.styleable.ViewTag);
final int key = ta.getResourceId(R.styleable.ViewTag_id, 0);
final CharSequence value = ta.getText(R.styleable.ViewTag_value);
//其实就是setTag...
view.setTag(key, value);
ta.recycle();
consumeChildElements(parser);
}
可以看到,这个方法的本质就是我们常用的setTag
方法,也就是说我们可以有以下这种写法(虽然不常用)。
<Button
android:id="@+id/tag_btn"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="自定义带监听事件的通知">
<tag
android:id="@+id/tag_id"
android:value="@string/app_name" />
</Button>
接下来解析的是我们常用的include
标签,首先在注释2处,我们可以看到,include
是不能再xml的深度=0的,应该也没人会把include作为xml的根结点吧。。。紧接着便调用parseInclude
方法解析include
标签内的布局文件。
private void parseInclude(XmlPullParser parser, Context context, View parent,
AttributeSet attrs) throws XmlPullParserException, IOException {
int type;
if (parent instanceof ViewGroup) {
// Apply a theme wrapper, if requested. This is sort of a weird
// edge case, since developers think the <include> overwrites
// values in the AttributeSet of the included View. So, if the
// included View has a theme attribute, we'll need to ignore it.
final TypedArray ta = context.obtainStyledAttributes(attrs, ATTRS_THEME);
final int themeResId = ta.getResourceId(0, 0);
final boolean hasThemeOverride = themeResId != 0;
if (hasThemeOverride) {
context = new ContextThemeWrapper(context, themeResId);
}
ta.recycle();
// If the layout is pointing to a theme attribute, we have to
// massage the value to get a resource identifier out of it.
int layout = attrs.getAttributeResourceValue(null, ATTR_LAYOUT, 0);
if (layout == 0) {
final String value = attrs.getAttributeValue(null, ATTR_LAYOUT);
if (value == null || value.length() <= 0) {
throw new InflateException("You must specify a layout in the"
+ " include tag: <include layout=\"@layout/layoutID\" />");
}
// Attempt to resolve the "?attr/name" string to an attribute
// within the default (e.g. application) package.
layout = context.getResources().getIdentifier(
value.substring(1), "attr", context.getPackageName());
}
// The layout might be referencing a theme attribute.
if (mTempValue == null) {
mTempValue = new TypedValue();
}
if (layout != 0 && context.getTheme().resolveAttribute(layout, mTempValue, true)) {
layout = mTempValue.resourceId;
}
if (layout == 0) {
final String value = attrs.getAttributeValue(null, ATTR_LAYOUT);
throw new InflateException("You must specify a valid layout "
+ "reference. The layout ID " + value + " is not valid.");
} else {
//把inflate方法又写了一遍,其实感觉Google这里的写法是可以优化的。。。。
final XmlResourceParser childParser = context.getResources().getLayout(layout);
try {
final AttributeSet childAttrs = Xml.asAttributeSet(childParser);
while ((type = childParser.next()) != XmlPullParser.START_TAG &&
type != XmlPullParser.END_DOCUMENT) {
// Empty.
}
if (type != XmlPullParser.START_TAG) {
throw new InflateException(childParser.getPositionDescription() +
": No start tag found!");
}
final String childName = childParser.getName();
if (TAG_MERGE.equals(childName)) {
// The <merge> tag doesn't support android:theme, so
// nothing special to do here.
rInflate(childParser, parent, context, childAttrs, false);
} else {
final View view = createViewFromTag(parent, childName,
context, childAttrs, hasThemeOverride);
final ViewGroup group = (ViewGroup) parent;
final TypedArray a = context.obtainStyledAttributes(
attrs, R.styleable.Include);
final int id = a.getResourceId(R.styleable.Include_id, View.NO_ID);
final int visibility = a.getInt(R.styleable.Include_visibility, -1);
a.recycle();
// We try to load the layout params set in the <include /> tag.
// If the parent can't generate layout params (ex. missing width
// or height for the framework ViewGroups, though this is not
// necessarily true of all ViewGroups) then we expect it to throw
// a runtime exception.
// We catch this exception and set localParams accordingly: true
// means we successfully loaded layout params from the <include>
// tag, false means we need to rely on the included layout params.
ViewGroup.LayoutParams params = null;
try {
params = group.generateLayoutParams(attrs);
} catch (RuntimeException e) {
// Ignore, just fail over to child attrs.
}
if (params == null) {
params = group.generateLayoutParams(childAttrs);
}
view.setLayoutParams(params);
// Inflate all children.
rInflateChildren(childParser, view, childAttrs, true);
if (id != View.NO_ID) {
view.setId(id);
}
switch (visibility) {
case 0:
view.setVisibility(View.VISIBLE);
break;
case 1:
view.setVisibility(View.INVISIBLE);
break;
case 2:
view.setVisibility(View.GONE);
break;
}
group.addView(view);
}
} finally {
childParser.close();
}
}
} else {
throw new InflateException("<include /> can only be used inside of a ViewGroup");
}
LayoutInflater.consumeChildElements(parser);
}
这里可以看到include标签记载的布局必须是ViewGroup,不然会抛异常,剩下的仔细看的话会发现其实和inflate方法几乎一摸一样,只不过多了一些属性判断,其实感觉Google这里的写法是可以优化的。。。
解析完include
方法后在注释3处就是解析merge
标签,这里可以看到,如果是merge
标签,便会直接抛异常,当然,在rInflate
方法其实已经是解析子View的方法了。
merge标签只能用于根结点
else {
//4。创建当前节点的View
final View view = createViewFromTag(parent, name, context, attrs);
final ViewGroup viewGroup = (ViewGroup) parent;
final ViewGroup.LayoutParams params = viewGroup.generateLayoutParams(attrs);
//递归深度继续解析
rInflateChildren(parser, view, attrs, true);
viewGroup.addView(view, params);
}
剩下的就是其他常规View的创建了,利用createViewFromTag
方法进行创建,创建完后调用rInflateChildren
继续递归深度继续解析,然后加入到父布局中。
最终完成整个XML->View的转换。
createViewFromTag方法
private View createViewFromTag(View parent, String name, Context context, AttributeSet attrs) {
return createViewFromTag(parent, name, context, attrs, false);
}
View createViewFromTag(View parent, String name, Context context, AttributeSet attrs,
boolean ignoreThemeAttr) {
if (name.equals("view")) {
name = attrs.getAttributeValue(null, "class");
}
// Apply a theme wrapper, if allowed and one is specified.
if (!ignoreThemeAttr) {
final TypedArray ta = context.obtainStyledAttributes(attrs, ATTRS_THEME);
final int themeResId = ta.getResourceId(0, 0);
if (themeResId != 0) {
context = new ContextThemeWrapper(context, themeResId);
}
ta.recycle();
}
if (name.equals(TAG_1995)) {
// Let's party like it's 1995!
//1。彩蛋,BlinkLayout,好像是为了庆祝1995年的复活节,是一个Layout,包含后,会一闪一闪
return new BlinkLayout(context, attrs);
}
try {
View view;
//2。几个工厂,可以通过Activity设置后,自定义创建
if (mFactory2 != null) {
view = mFactory2.onCreateView(parent, name, context, attrs);
} else if (mFactory != null) {
view = mFactory.onCreateView(name, context, attrs);
} else {
view = null;
}
if (view == null && mPrivateFactory != null) {
view = mPrivateFactory.onCreateView(parent, name, context, attrs);
}
if (view == null) {
final Object lastContext = mConstructorArgs[0];
mConstructorArgs[0] = context;
try {
if (-1 == name.indexOf('.')) {
//3。没有.说明是原生系统内的控件
view = onCreateView(parent, name, attrs);
} else {
//4。有.说明是自定义控件
view = createView(name, null, attrs);
}
} finally {
mConstructorArgs[0] = lastContext;
}
}
return view;
} catch (InflateException e) {
throw e;
} catch (ClassNotFoundException e) {
final InflateException ie = new InflateException(attrs.getPositionDescription()
+ ": Error inflating class " + name, e);
ie.setStackTrace(EMPTY_STACK_TRACE);
throw ie;
} catch (Exception e) {
final InflateException ie = new InflateException(attrs.getPositionDescription()
+ ": Error inflating class " + name, e);
ie.setStackTrace(EMPTY_STACK_TRACE);
throw ie;
}
}
这里我们首先看一个有趣的地方,那就是注释1,这里可以算是源码里的彩蛋,从名字上也就看出了这个的不一般~,这里提供了一个叫做
BlinkLayout
的控件,好像是为了庆祝1995年的复活节,是一个Layout,包含后,会一闪一闪。
接下来会看到几个工厂的创建,如果我们实现了几个工厂,那么我们就可以自定义View的创建过程,这里关于工厂的内容后面一篇博客会进行分析。
如果是常规的使用,我们一般不会使用自定义工厂这种方式的,所以到后面就是一个关键判断。
if (-1 == name.indexOf('.')) {
//3。没有.说明是原生系统内的控件
view = onCreateView(parent, name, attrs);
} else {
//4。有.说明是自定义控件
view = createView(name, null, attrs);
}
这里通过标签名时候包含‘.’作为判断依据,如果不包含‘.’则说明是原生系统内的控件,如果包含则是自定义控件。而系统控件执行的onCreateView
方法,实质也是createView
方法,只不过加上了"android.view."的前缀
protected View onCreateView(String name, AttributeSet attrs)
throws ClassNotFoundException {
//最终还是调用的是createView方法,只不过加上了"android.view."的前缀
return createView(name, "android.view.", attrs);
}
接下来我们来看一下createView
方法。
public final View createView(String name, String prefix, AttributeSet attrs)
throws ClassNotFoundException, InflateException {
Constructor<? extends View> constructor = sConstructorMap.get(name);
if (constructor != null && !verifyClassLoader(constructor)) {
constructor = null;
sConstructorMap.remove(name);
}
Class<? extends View> clazz = null;
try {
Trace.traceBegin(Trace.TRACE_TAG_VIEW, name);
if (constructor == null) {
// Class not found in the cache, see if it's real, and try to add it
//1。加入的“android.view.”的前缀在此处就会用于查找Class对象
clazz = mContext.getClassLoader().loadClass(
prefix != null ? (prefix + name) : name).asSubclass(View.class);
if (mFilter != null && clazz != null) {
boolean allowed = mFilter.onLoadClass(clazz);
if (!allowed) {
failNotAllowed(name, prefix, attrs);
}
}
//2。构造函数没有缓存,则直接反射调用构造函数,并缓存起来
constructor = clazz.getConstructor(mConstructorSignature);
constructor.setAccessible(true);
sConstructorMap.put(name, constructor);
} else {
// If we have a filter, apply it to cached constructor
if (mFilter != null) {
// Have we seen this name before?
Boolean allowedState = mFilterMap.get(name);
if (allowedState == null) {
// New class -- remember whether it is allowed
clazz = mContext.getClassLoader().loadClass(
prefix != null ? (prefix + name) : name).asSubclass(View.class);
boolean allowed = clazz != null && mFilter.onLoadClass(clazz);
mFilterMap.put(name, allowed);
if (!allowed) {
failNotAllowed(name, prefix, attrs);
}
} else if (allowedState.equals(Boolean.FALSE)) {
failNotAllowed(name, prefix, attrs);
}
}
}
Object lastContext = mConstructorArgs[0];
if (mConstructorArgs[0] == null) {
// Fill in the context if not already within inflation.
mConstructorArgs[0] = mContext;
}
Object[] args = mConstructorArgs;
args[1] = attrs;
//3。利用反射构造函数,进行创建View
final View view = constructor.newInstance(args);
if (view instanceof ViewStub) {
// Use the same context when inflating ViewStub later.
final ViewStub viewStub = (ViewStub) view;
//ViewStub会设置inflater
viewStub.setLayoutInflater(cloneInContext((Context) args[0]));
}
mConstructorArgs[0] = lastContext;
return view;
} catch (NoSuchMethodException e) {
final InflateException ie = new InflateException(attrs.getPositionDescription()
+ ": Error inflating class " + (prefix != null ? (prefix + name) : name), e);
ie.setStackTrace(EMPTY_STACK_TRACE);
throw ie;
} catch (ClassCastException e) {
// If loaded class is not a View subclass
final InflateException ie = new InflateException(attrs.getPositionDescription()
+ ": Class is not a View " + (prefix != null ? (prefix + name) : name), e);
ie.setStackTrace(EMPTY_STACK_TRACE);
throw ie;
} catch (ClassNotFoundException e) {
// If loadClass fails, we should propagate the exception.
throw e;
} catch (Exception e) {
final InflateException ie = new InflateException(
attrs.getPositionDescription() + ": Error inflating class "
+ (clazz == null ? "<unknown>" : clazz.getName()), e);
ie.setStackTrace(EMPTY_STACK_TRACE);
throw ie;
} finally {
Trace.traceEnd(Trace.TRACE_TAG_VIEW);
}
}
这个方法还是比较简单的,首先在注释1处我们会发现我们刚才加入的"android.view."的前缀会加入到class到全类名中,用于查找Class对象。
紧接着在注释2其实LayoutInflater查找缓存中的构造器对象,避免频繁的调用反射来查找使用构造器函数。
private static final HashMap<String, Constructor<? extends View>> sConstructorMap =
new HashMap<String, Constructor<? extends View>>();
可以看到这里就是一个类名作为key,构造器函数作为value的hashMap
。
最后在注释3处通过反射调用View的构造函数,实现View的创建。
final View view = constructor.newInstance(args);
总结
到此关于LayoutInflater的源码分析算是有了一个整体的认识,通过分析inflate
方法我们其实不仅仅可以学习关于加载布局时root
和attachToRoot
的关系,还可以了解到关于include
标签,merge
标签,的使用规则。当然我们最终会发现其实LayoutInflater的实质就递归解析,解析到类名后,如果是自定义的则是全类名,系统的则自动加上“android.view.”前缀,然后通过反射调用该类的构造函数,最终创建出View。
下一篇博客会继续分析关于LayoutInflater中关于工厂的使用,通过分析我们会发现关于fragment
标签在系统的解析方式(本篇没有发现源码中有关于fragment标签的踪迹)。