泛化误差估计与模型调参

作者:JSong,时间:2017.10.21

广义的偏差(bias)描述的是预测值和真实值之间的差异,方差(variance)描述距的是预测值作为随机变量的离散程度。《Understanding the Bias-Variance Tradeoff》当中有一副图形象地向我们展示了偏差和方差的关系:

bias_and_variance.png

1、Bias-variance 分解

我们知道算法在不同训练集上学到的结果很可能不同,即便这些训练集来自于同一分布。对测试样本 $x$ ,令 $y_D$ 为 $x$ 在数据集中的标记,$y$ 为 $x$ 的真实标记, $f(x;D)$ 为训练集 $D$ 上学的模型 $f$ 在 $x$ 上的预测输出。

在回归任务中,学习算法的期望输出为:

使用样本数相同的不同训练集产生的方差为:

噪声为

期望输出与真实标记的差别称为偏差(bias),即

为便于讨论,假定噪声期望为零,即 $\mathbb{E}{D}[y{D}-y]=0$. 通过简单的多项式展开合并,对算法的期望泛化误差进行分解:

于是

也就是说,泛化误差可分解为偏差、方差与噪声之和。

偏差和方差是有冲突的,下面是一个示意图。在训练不足(模型复杂度低)时,偏差主导了泛化误差率;随着训练程度的加深,方差逐渐主导了泛化误差率。

b

2、k-近邻算法

在k近邻算法中,我们可以严格的给出偏差-方差分解

随着 k 的增大,偏差增大,方差减小。

3、集成学习

在bagging和boosting框架中,通过计算基模型的期望和方差,我们可以得到模型整体的期望和方差。为了简化模型,我们假设基模型的权重、方差及两两间的相关系数相等。由于bagging和boosting的基模型都是线性组成的,那么有:

3.1 bagging的偏差和方差

对于bagging来说,每个基模型的权重等于1/m且期望近似相等(子训练集都是从原训练集中进行子抽样),故我们可以进一步化简得到:

根据上式我们可以看到,整体模型的期望近似于基模型的期望,这也就意味着整体模型的偏差和基模型的偏差近似。同时,整体模型的方差小于等于基模型的方差(当相关性为1时取等号),随着基模型数(m)的增多,整体模型的方差减少,从而防止过拟合的能力增强,模型的准确度得到提高。但是,模型的准确度一定会无限逼近于1吗?并不一定,当基模型数增加到一定程度时,方差公式第二项的改变对整体方差的作用很小,防止过拟合的能力达到极限,这便是准确度的极限了。另外,在此我们还知道了为什么bagging中的基模型一定要为强模型,否则就会导致整体模型的偏差度低,即准确度低。

Random Forest是典型的基于bagging框架的模型,其在bagging的基础上,进一步降低了模型的方差。Random Fores中基模型是树模型,在树的内部节点分裂过程中,不再是将所有特征,而是随机抽样一部分特征纳入分裂的候选项。这样一来,基模型之间的相关性降低,从而在方差公式中,第一项显著减少,第二项稍微增加,整体方差仍是减少。

3.2 boosting 的偏差和方差

对于boosting来说,基模型的训练集抽样是强相关的,那么模型的相关系数近似等于1,故我们也可以针对boosting化简公式为:

通过观察整体方差的表达式,我们容易发现,若基模型不是弱模型,其方差相对较大,这将导致整体模型的方差很大,即无法达到防止过拟合的效果。因此,boosting框架中的基模型必须为弱模型。

因为基模型为弱模型,导致了每个基模型的准确度都不是很高(因为其在训练集上的准确度不高)。随着基模型数的增多,整体模型的期望值增加,更接近真实值,因此,整体模型的准确度提高。但是准确度一定会无限逼近于1吗?仍然并不一定,因为训练过程中准确度的提高的主要功臣是整体模型在训练集上的准确度提高,而随着训练的进行,整体模型的方差变大,导致防止过拟合的能力变弱,最终导致了准确度反而有所下降。

基于boosting框架的Gradient Tree Boosting模型中基模型也为树模型,同Random Forrest,我们也可以对特征进行随机抽样来使基模型间的相关性降低,从而达到减少方差的效果。

参考文献

[1]. Understanding the Bias-Variance Tradeoff

[2]. 使用sklearn进行集成学习——理论

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 194,761评论 5 460
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 81,953评论 2 371
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 141,998评论 0 320
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,248评论 1 263
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,130评论 4 356
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,145评论 1 272
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,550评论 3 381
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,236评论 0 253
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,510评论 1 291
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,601评论 2 310
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,376评论 1 326
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,247评论 3 313
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,613评论 3 299
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 28,911评论 0 17
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,191评论 1 250
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,532评论 2 342
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 40,739评论 2 335

推荐阅读更多精彩内容