云数据库POLARDB之会话读一致性

原文地址:https://help.aliyun.com/document_detail/99093.html?spm=5176.polardb.0.0.43803b71lByRX7

POLARDB架构

POLARDB是一个由多个节点构成的数据库集群,一个主节点,多个读节点。对外默认提供两个地址,一个是集群地址,一个是主地址,推荐使用集群地址,因为它具备读写分离功能可以把所有节点的资源整合到一起对外提供服务。

MySQL读写分离解决和引入

用过MySQL的都知道,MySQL的主从复制简单易用,非常流行,通过把主库的Binlog异步地传输到备库并实时应用,一方面可以实现高可用,另一方面备库也可以提供查询,来减轻对主库的压力。

虽然备库可以提供查询,但存在两个问题:

一是主库和备库一般提供两个不同的访问地址,应用程序端需要选择使用哪一个,对应用有侵入。

二是MySQL的复制是异步的,即使是半同步也没办法做到100%强同步,因此备库的数据并不是最新的,有延迟,无法保证查询的一致性。

为了解决第一个问题,我们引入了读写分离代理。一般的实现是,代理会伪造成MySQL与应用程序建立好连接,解析发送进来的每一条SQL,如果是UPDATE、DELETE、INSERT、CREATE等写操作则直接发往主库,如果是SELECT则发送到备库。

但是第二个问题,延迟导致的查询不一致,还是没有解决,使用时,就不可避免地会遇到备库SELECT查询数据不一致的现象(因为主备有延迟)。MySQL负载低的时候延迟可以控制在5秒内,但当负载很高时,尤其是对大表做DDL(比如加字段)或者大批量插入的时候,延迟会非常严重。

POLARDB最终一致性和会话读一致性

  • 最终一致性:POLARDB采用异步物理复制方式在主库和只读库间做数据同步, 在主库更新后,相关的更新会apply到只读库,具体的延迟时间与写入压力有关, 一般在ms级别, 通过异步复制的方式实现主库和只读库之间的最终数据一致。
  • 会话读一致性:为了解决最终一致性会出现的查询不一致,POLARDB利用自身物理复制速度快的优点,将查询发给已经更新了数据的只读节点,详细原理请参见实现原理

POLARDB读写分离的会话读一致性

POLARDB是读写分离的架构,传统的读写分离都只提供最终一致性的保证,主从复制延迟会导致从不同节点查询到的结果不同,比如一个会话内连续执行以下QUERY:

INSERT INTO t1(id, price) VALUES(111, 96);
UPDATE t1 SET price = 100 WHERE id=111;
SELECT price FROM t1;

在读写分离的下,最后一个查询的结果是不确定的,因为读会发到只读库,在执行SELECT时之前的更新是否同步到了只读库时不确定的,因此结果也是不确定的;因为有这个问题,所以就要求应用程序去适应最终一致性,而一般的解决方法是: 将业务做拆分,有高一致性要求的请求直连到主库,可以接受最终一致性的部分走读写分离;显然这样会增加应用开发的负担,还会增大主库的压力,影响读写分离的效果。

为了解决这个问题,在POLARDB中我们提供了会话一致性或者说因果一致性的保证,会话一致性即保证同一个会话内,后面的请求一定能够看到此前更新所产生版本的数据或者比这个版本更新的数据,保证单调性,就很好的解决了上面这个例子里的问题。

实现原理

在POLARDB的链路中间层做读写分离的同时,中间层会track各个节点已经apply了的redolog位点即LSN,同时每次更新时会记录此次更新的位点为Session LSN, 当有新请求到来时我们会比较Session LSN 和当前各个节点的LSN,仅将请求发往LSN >= Session LSN的节点,从而保证了会话一致性;表面上看该方案可能导致主库压力大,但是因为POLARDB是物理复制,速度极快,在上述场景中,当更新完成后,返回客户端结果时复制就同步在进行,而当下一个读请求到来时主从极有可能已经完成,然后大多数应用场景都是读多写少,所以经验证在该机制下即保证了会话一致性,也保证了读写分离负载均衡的效果。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 201,784评论 5 474
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 84,745评论 2 378
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 148,702评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,229评论 1 272
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,245评论 5 363
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,376评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,798评论 3 393
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,471评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,655评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,485评论 2 318
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,535评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,235评论 3 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,793评论 3 304
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,863评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,096评论 1 258
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,654评论 2 348
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,233评论 2 341

推荐阅读更多精彩内容

  • tensorflow提供两种模型格式 checkpoint:依赖于创建模型的代码 SavedModel:与模型代码...
    happy_19阅读 529评论 0 0
  • 早上醒来,站在窗边,外面一片模糊,什么都看不到,向下望去,只隐约可见路灯发出的点点光晕。打开手机天气,显示“大雾红...
    行知有料阅读 386评论 0 1
  • 之前在网上看过一段话: 每次,打开衣柜,发愁穿什么的时候,每次都会感概, 得了一种“穿去年的衣服会丑哭”的病的时候...
    不着急小姐阅读 478评论 0 0
  • 没人在意 这普通的一天是如何消亡 这里的风雨 在你睁眼时俱藏在黑夜里 从清晨睡到黎明 你错过的 不止是一场风和日丽...
    如果你有时间阅读我阅读 202评论 0 0