redis Distributed locks(7)

1.需要保证的属性

Safety property: Mutual exclusion(互斥). At any given moment, only one client can hold a lock.
Liveness property A: Deadlock free. Eventually it is always possible to acquire a lock, even if the client that locked a resource crashes or gets partitioned.
Liveness property B: Fault tolerance. As long as the majority of Redis nodes are up, clients are able to acquire and release locks.

2.基于备份的实现无法保证

//在实例中创建一个key,用于lock
The simplest way to use Redis to lock a resource is to create a key in an instance. The key is usually created with a limited time to live, using the Redis expires feature, so that eventually it will get released (property 2 in our list). When the client needs to release the resource, it deletes the key.
//问题,如果master死了,那么无法保证,因为副本是异步的
Superficially this works well, but there is a problem: this is a single point of failure in our architecture. What happens if the Redis master goes down? Well, let’s add a slave! And use it if the master is unavailable. This is unfortunately not viable. By doing so we can’t implement our safety property of mutual exclusion, because Redis replication is asynchronous.
There is an obvious race condition with this model:

  • Client A acquires the lock in the master.
  • The master crashes before the write to the key is transmitted to the slave.
  • The slave gets promoted to master.
  • Client B acquires the lock to the same resource A already holds a lock for. SAFETY VIOLATION!

3.Correct implementation with a single instance

只是对于单实例,不适用集群
To acquire the lock, the way to go is the following:
//设置key的时候,只有不存在NX选项

SET resource_name my_random_value NX PX 30000

The command will set the key only if it does not already exist (NX option), with an expire of 30000 milliseconds (PX option). The key is set to a value “myrandomvalue”. This value must be unique across all clients and all lock requests.
Basically the random value is used in order to release the lock in a safe way, with a script that tells Redis: remove the key only if it exists and the value stored at the key is exactly the one I expect to be. This is accomplished by the following Lua script:

if redis.call("get",KEYS[1]) == ARGV[1] then
    return redis.call("del",KEYS[1])
else
    return 0
end

//有效避免了,锁的冲突,安全性问题
This is important in order to avoid removing a lock that was created by another client. For example a client may acquire the lock, get blocked in some operation for longer than the lock validity time (the time at which the key will expire), and later remove the lock, that was already acquired by some other client. Using just DEL is not safe as a client may remove the lock of another client. With the above script instead every lock is “signed” with a random string, so the lock will be removed only if it is still the one that was set by the client trying to remove it.


4.The Redlock algorithm

redis的分布式算法,使用N个完全独立Master,而不是基于复制的模式
In the distributed version of the algorithm we assume we have N Redis masters. Those nodes are totally independent, so we don’t use replication or any other implicit coordination system. We already described how to acquire and release the lock safely in a single instance. We take for granted that the algorithm will use this method to acquire and release the lock in a single instance. In our examples we set N=5, which is a reasonable value, so we need to run 5 Redis masters on different computers or virtual machines in order to ensure that they’ll fail in a mostly independent way.
In order to acquire the lock, the client performs the following operations:

  • (1)It gets the current time in milliseconds.
    获取时间戳
  • (2)It tries to acquire the lock in all the N instances sequentially, using the same key name and random value in all the instances. During step 2, when setting the lock in each instance, the client uses a timeout which is small compared to the total lock auto-release time in order to acquire it. (设置一个timeout过期时间)For example if the auto-release time is 10 seconds, the timeout could be in the ~ 5-50 milliseconds range. This prevents the client from remaining blocked for a long time trying to talk with a Redis node which is down: if an instance is not available, we should try to talk with the next instance ASAP.
  • (3)The client computes how much time elapsed in order to acquire the lock, by subtracting from the current time the timestamp obtained in step 1. If and only if the client was able to acquire the lock in the majority of the instances (at least 3), and the total time elapsed to acquire the lock is less than lock validity time, the lock is considered to be acquired.(只有当大部分的master同意,并且获取锁的时间小于锁的有效时间)
  • (4)If the lock was acquired, its validity time is considered to be the initial validity time minus the time elapsed, as computed in step 3.
  • (5)If the client failed to acquire the lock for some reason (either it was not able to lock N/2+1 instances or the validity time is negative), it will try to unlock all the instances (even the instances it believed it was not able to lock).(如果获取失败会释放所有masters的锁定)

5. 要点

(1)Retry on failure 当获取锁失败的时候要快速重试,减少裂变的可能!!

When a client is unable to acquire the lock, it should try again after a random delay in order to try to desynchronize multiple clients trying to acquire the lock for the same resource at the same time (this may result in a split brain condition where nobody wins). Also the faster a client tries to acquire the lock in the majority of Redis instances, the smaller the window for a split brain condition (and the need for a retry), so ideally the client should try to send the SET commands to the N instances at the same time using multiplexing.

https://redis.io/topics/distlock

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 199,519评论 5 468
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 83,842评论 2 376
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 146,544评论 0 330
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 53,742评论 1 271
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 62,646评论 5 359
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,027评论 1 275
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,513评论 3 390
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,169评论 0 254
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,324评论 1 294
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,268评论 2 317
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,299评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,996评论 3 315
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,591评论 3 303
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,667评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,911评论 1 255
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,288评论 2 345
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 41,871评论 2 341

推荐阅读更多精彩内容