设计模式 - 七大设计原则(三)- 迪米特法则与里氏替换原则

概述

简单介绍一下七大设计原则:

  1. 开闭原则:是所有面向对象设计的核心,对扩展开放,对修改关闭
  2. 依赖倒置原则:针对接口编程,依赖于抽象而不依赖于具体
  3. 单一职责原则:一个接口只负责一件事情,只能有一个原因导致类变化
  4. 接口隔离原则:使用多个专门的接口,而不是使用一个总接口
  5. 迪米特法则(最少知道原则):只和朋友交流(成员变量、方法输入输出参数),不和陌生人说话,控制好访问修饰符
  6. 里氏替换原则:子类可以扩展父类的功能,但不能改变父类原有的功能
  7. 合成复用原则:尽量使用对象组合(has-a)/聚合(contanis-a),而不是继承关系达到软件复用的目的

迪米特法则

定义

迪米特原则(Law of Demeter LoD)是指一个对象应该对其他对象保持最少的了解,又 叫最少知道原则(Least Knowledge Principle,LKP),尽量降低类与类之间的耦合。

迪米特原则主要强调只和朋友交流,不和陌生人说话。出现在成员变量、方法的输入、输 出参数中的类都可以称之为成员朋友类,而出现在方法体内部的类不属于朋友类。

示例

现在来设计一个权限系统,Boss 需要查看目前发布到线上的课程数量。这时候,Boss 要找到 TeamLeader 去进行统计,TeamLeader 再把统计结果告诉 Boss。接下来我们还 是来看代码:

Course类:

/**
 * @author eamon.zhang
 * @date 2019-09-26 上午9:17
 */
public class Course {
}

TeamLeader 类:

/**
 * @author eamon.zhang
 * @date 2019-09-26 上午9:17
 */
public class TeamLeader {
    public void checkNumberOfCourses(List<Course> courseList) {
        System.out.println("目前已发布的课程数量是:" + courseList.size());
    }
}

Boss 类:

/**
 * @author eamon.zhang
 * @date 2019-09-26 上午9:17
 */
public class Boss {
    public void commandCheckNumber(TeamLeader teamLeader) {
        //模拟 Boss 一页一页往下翻页,TeamLeader 实时统计
        List<Course> courseList = new ArrayList<Course>();
        for (int i = 0; i < 20; i++) {
            courseList.add(new Course());
        }
        teamLeader.checkNumberOfCourses(courseList);
    }
}

测试代码:

public static void main(String[] args) {
    Boss boss = new Boss();
    TeamLeader teamLeader = new TeamLeader();
    boss.commandCheckNumber(teamLeader);
}

写到这里,其实功能已经都已经实现,代码看上去也没什么问题。根据迪米特原则,Boss 只想要结果,不需要跟 Course 产生直接的交流。而 TeamLeader 统计需要引用 Course 对象。BossCourse 并不是朋友,从下面的类图就可以看出来:

下面来对代码进行改造:
TeamLeader类:

/**
 * @author eamon.zhang
 * @date 2019-09-26 上午9:17
 */
public class TeamLeader {
    public void checkNumberOfCourses() {
        List<Course> courseList = new ArrayList<Course>();
        for (int i = 0; i < 20; i++) {
            courseList.add(new Course());
        }
        System.out.println("目前已发布的课程数量是:" + courseList.size());
    }
}

Boss 类:

/**
 * @author eamon.zhang
 * @date 2019-09-26 上午9:17
 */
public class Boss {
    public void commandCheckNumber(TeamLeader teamLeader) {
        teamLeader.checkNumberOfCourses();
    }
}

再来看下面的类图,Course 和 Boss 已经没有关联了。

学习软件设计原则,千万不能形成强迫症。碰到业务复杂的场景,我们需要随机应变。


里氏替换原则

定义

里氏替换原则(Liskov Substitution Principle,LSP)是指如果对每一个类型为 T1 的对 象 o1,都有类型为 T2 的对象 o2,使得以 T1 定义的所有程序 P 在所有的对象 o1 都替换成 o2 时,程序 P 的行为没有发生变化,那么类型 T2 是类型 T1 的子类型。

定义看上去还是比较抽象,我们重新理解一下,可以理解为一个软件实体如果适用一个 父类的话,那一定是适用于其子类,所有引用父类的地方必须能透明地使用其子类的对象,子类对象能够替换父类对象,而程序逻辑不变。根据这个理解,我们总结一下:

引申含义:子类可以扩展父类的功能,但不能改变父类原有的功能。

  1. 子类可以实现父类的抽象方法,但不能覆盖父类的非抽象方法。
  2. 子类中可以增加自己特有的方法。
  3. 当子类的方法重载父类的方法时,方法的前置条件(即方法的输入/入参)要比父类 方法的输入参数更宽松。
  4. 当子类的方法实现父类的方法时(重写/重载或实现抽象方法),方法的后置条件(即 方法的输出/返回值)要比父类更严格或相等。

示例

在前面讲开闭原则的时候埋下了一个伏笔,我们记得在获取折后时重写覆盖了父类的 getPrice()方法,增加了一个获取原价格的方法 getOriginPrice(),显然就违背了里氏替换 原则。我们修改一下代码,不应该覆盖 getPrice()方法,增加 getDiscountPrice()方法:

/**
 * @author eamon.zhang
 * @date 2019-09-25 上午10:36
 */
public class NovelDiscountBook extends NovelBook {
    public NovelDiscountBook(String name, int price, String author) {
        super(name, price, author);
    }

    public double getDiscountPrice(){
        return super.getPrice() * 0.85;
    }
}

使用里氏替换原则有以下优点:

  1. 约束继承泛滥,开闭原则的一种体现。
  2. 加强程序的健壮性,同时变更时也可以做到非常好的兼容性,提高程序的维护性、扩 展性。降低需求变更时引入的风险。

现在来描述一个经典的业务场景,用正方形、矩形和四边形的关系说明里氏替换原则, 我们都知道正方形是一个特殊的长方形,那么就可以创建一个长方形父类 Rectangle 类:

/**
 * @author eamon.zhang
 * @date 2019-09-26 上午9:59
 */
public class Rectangle {
    private long height;
    private long width;

    public long getHeight() {
        return height;
    }

    public void setHeight(long height) {
        this.height = height;
    }

    public long getWidth() {
        return width;
    }

    public void setWidth(long width) {
        this.width = width;
    }
}

创建正方形 Square 类继承长方形:

/**
 * @author eamon.zhang
 * @date 2019-09-26 上午10:01
 */
public class Square extends Rectangle {
    private long length;

    public long getLength() {
        return length;
    }

    public void setLength(long length) {
        this.length = length;
    }

    @Override
    public long getHeight() {
        return super.getHeight();
    }

    @Override
    public void setHeight(long height) {
        super.setHeight(height);
    }

    @Override
    public long getWidth() {
        return super.getWidth();
    }

    @Override
    public void setWidth(long width) {
        super.setWidth(width);
    }
}

在测试类中创建 resize()方法,根据逻辑长方形的宽应该大于等于高,我们让高一直自增, 知道高等于宽变成正方形:

 public static void resize(Rectangle rectangle) {
    while (rectangle.getWidth() >= rectangle.getHeight()) {
        rectangle.setHeight(rectangle.getHeight() + 1);
        System.out.println("width:" + rectangle.getWidth() + ",height:" + rectangle.getHeight());
    }
    System.out.println("resize 方法结束" +
            "\nwidth:" + rectangle.getWidth() + ",height:" + rectangle.getHeight());
}

测试代码:

public static void main(String[] args) {
    Rectangle rectangle = new Rectangle();
    rectangle.setWidth(20);
    rectangle.setHeight(10);
    resize(rectangle);
}

运行结果:


发现高比宽还大了,在长方形中是一种非常正常的情况。现在我们再来看下面的代码, 把长方形 Rectangle 替换成它的子类正方形 Square,修改测试代码:

public static void main(String[] args) {
    Square square = new Square();
    square.setLength(10);
    resize(square);
}

这时候我们运行的时候就出现了死循环,违背了里氏替换原则,将父类替换为子类后, 程序运行结果没有达到预期。因此,我们的代码设计是存在一定风险的。里氏替换原则 只存在父类与子类之间,约束继承泛滥。我们再来创建一个基于长方形与正方形共同的 抽象四边形 Quadrangle 接口:

/**
 * @author eamon.zhang
 * @date 2019-09-26 上午10:12
 */
public interface Quadrangle {
    long getWidth();

    long getHeight();
}

修改长方形 Rectangle 类:

/**
 * @author eamon.zhang
 * @date 2019-09-26 上午9:59
 */
public class Rectangle implements Quadrangle {
    private long height;
    private long width;

    @Override
    public long getWidth() {
        return width;
    }

    public long getHeight() {
        return height;
    }

    public void setHeight(long height) {
        this.height = height;
    }

    public void setWidth(long width) {
        this.width = width;
    }
}

修改正方形类 Square 类:

/**
 * @author eamon.zhang
 * @date 2019-09-26 上午10:01
 */
public class Square implements Quadrangle {
    private long length;

    public long getLength() {
        return length;
    }

    public void setLength(long length) {
        this.length = length;
    }

    @Override
    public long getWidth() {
        return length;
    }

    @Override
    public long getHeight() {
        return length;
    }
}

此时,如果我们把 resize()方法的参数换成四边形 Quadrangle 类,方法内部就会报错。

因为正方形 Square 已经没有了 setWidth()setHeight()方法了。因此,为了约束继承 泛滥,resize()的方法参数只能用 Rectangle 长方形。当然,我们在后面的设计模式系列文章中 中还会继续深入讲解。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 194,242评论 5 459
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 81,769评论 2 371
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 141,484评论 0 319
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,133评论 1 263
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,007评论 4 355
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,080评论 1 272
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,496评论 3 381
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,190评论 0 253
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,464评论 1 290
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,549评论 2 309
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,330评论 1 326
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,205评论 3 312
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,567评论 3 298
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 28,889评论 0 17
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,160评论 1 250
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,475评论 2 341
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 40,650评论 2 335

推荐阅读更多精彩内容