Python数据分析案例-药品数据分析案例

最近学习了python数据分析的一些基础知识,有numpy,pandas,matplotlib等,找了一个药品数据分析的小项目练一下手。

数据分析的步骤一般可以分为6个:

1,明确分析的目的

2,数据准备

3,数据清洗

4,数据分析

5,数据可视化

6,分析报告

数据分析的目的:

通过对朝阳区医院的药品销售数据的分析,了解朝阳医院的患者的月均消费次数,月均消费金额、客单价以及消费趋势、需求量前几位的药品等。

数据准备

数据是存在Excel中的,可以使用pandas的Excel文件读取函数将数据读取到内存中,这里需要注意的是文件名和Excel中的sheet页的名字。读取完数据后可以对数据进行预览和查看一些基本信息。

通过数据的基本信息可以看出来,总行数6578,但是社保卡号只有6576,其他行只有6577行,说明存在缺失值,这些将在数据清洗中进行处理。

数据清洗

数据清洗过程一般包括:选择子集、列名重命名、缺失数据处理、数据类型转换、数据排序及异常值处理等。

(1)选择子集

在我们获取到的数据中,可能数据量非常庞大,并不是每一列都有价值都需要分析,这时候就需要从整个数据中选取合适的子集进行分析,这样就可以提高效率。但是这个案例数据列较少,可以忽略这一步。

(2)列名重命名

在数据分析过程中,有些列名和数据容易混淆或产生歧义,不利于数据分析,这时候需要把列名换成容易理解的名称,可以采用rename函数实现:

(3)缺失数据处理

通过查看基本信息可以推测“社保卡号”这列存在缺失值,如果不处理这些缺失值会干扰后面的数据分析结果。缺失数据常用的处理方式有:删除缺失值,一般用于少量缺失值,对整体数据影响不大的情况;平均值填充,对于数值型常用;算法填充等。在本次案例中缺失值商量很少,直接使用dropna函数删除缺失数据。

(4)数据类型转换

在导入数据时为了防止导入不进来,会强制所有数据都是object类型,但实际数据分析过程中“销售数量”,“应收金额”,“实收金额”,这些列需要浮点型(float)数据,“销售时间”需要改成时间格式,因此需要对数据类型进行转换,可以使用astype()函数。

(5)异常值处理

查看数据的描述统计信息:我们可以看到最小值出现了负数,原因是销售数量的值为负数,需要将销售数量小于0的数据剔除掉。

数据分析及可视化

这里涉及到的数据可视化的部分并不多所以将数据分析和可视化结合起来,数据分析之前我们应该确定分析的指标。

(1)指标1:月均消费次数   计算:月均消费次数 = 总消费次数 / 月份数

(2)指标2:月均消费金额   计算:月均消费金额 = 总消费金额 / 月份数

(3)指标3:客单价  计算:客单价 = 总消费金额 / 总消费次数

(4)指标4:消费趋势

每天的消费金额分布情况:一横轴为时间,纵轴为实收金额画散点图。

每天消费金额分布图

结论:从散点图可以看出,每天消费金额在500以下的占绝大多数,个别天存在消费金额很大的情况。

月消费金额变化趋势,将销售时间按月聚合分组,然后求出分组后的累计金额,画出折线图。

结论:1月,4月,5月,6月的消费金额变化不大,基本持平,2月和3月金额较低,可能是受春节假期影响,部分外来居民回家了,7月份最低是因为数据不全造成的。

药品销售情况分析,对“商品名称”和“销售数量”这两列数据进行聚合为Series形式,方便后面统计。

结论:对于销售量排在前几位的药品,医院应该时刻关注,保证药品不会短缺而影响患者。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,802评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,109评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,683评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,458评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,452评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,505评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,901评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,550评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,763评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,556评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,629评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,330评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,898评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,897评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,140评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,807评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,339评论 2 342

推荐阅读更多精彩内容