多传感器融合定位:两小时速览

状态估计(State Estimation)选用传感器需要考虑哪些因素:

1)误差不相关性。也就是说,用于Sensor Fusion的传感器其中单个传感器(Sensor Measurement)测量失败,不会导致其它传感器(Sensor)由于相同的原因而同时失败。

2)传感器的相互补充性。 比如IMU可以填充GPS两次定位间隔期间的定位输出,用于平滑GPS/GNSS的定位结果;GPS为IMU提供初值,消除IMU单独使用出现的偏移(Drift)的问题;Lidar可以弥补定位精度的问题,而GNSS可以为Lidar定位地图匹配提供地图范围数据。


传感器的标定(Sensor Calibration)

如果想要各个传感器能够相互协同,无间配合,传感器的标定是必不可少的。传感器的标定通常分为三种: 内参标定(Intrinsic Calibration)、外参标定(Extrinsic Calibration)和时间校准(Temporal Calibration)。


自动驾驶汽车一般包含多个Camera、3D 激光雷达(Lidar)、惯性测量单元(IMU)、多个Radar、GPS/GNSS Reciver、轮速计(Wheel Odmetry),这些传感器在运行过程中时刻都在以不同的频率发送不同类型的数据,多传感器融合模块需要将这些信息融合起来,不断更新自动驾驶车辆的状态(Vehicle State)。多传感器融合进行状态估计(State Estimation)的流程如下:

车辆运动模型(Motion Model Input)如下,它的信息一般来自于IMU,包含x、y、z三个方向上的加速度和角速度,是一个6维向量。



EKF的IMU+GNSS+Lidar多传感器融合流程如下:

1)Update State With IMU Inputs   使用IMU的信息 用运动模型来更新状态


2 、 Propagate Uncertainty  不确定性更新


3、当有GNSS或者LIDAR测量结果到达时,进入步骤4),否则进入步骤1)。

4、计算GNSS/Lidar的卡尔曼增益(Kalman Gain)。   使用传感器测量模型H和不确定性P


4、计算Error State。  计算状态误差


5、Correct Predicted State。   状态预测


6、Compute Corrected Covariance。 不确定性预测


©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,098评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,213评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,960评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,519评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,512评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,533评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,914评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,574评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,804评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,563评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,644评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,350评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,933评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,908评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,146评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,847评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,361评论 2 342

推荐阅读更多精彩内容