变长双向rnn的正确使用姿势

如何使用双向RNN

在《深度学习之TensorFlow入门、原理与进阶实战》一书的9.4.2中的第4小节中,介绍过变长动态RNN的实现。这里在来延伸的讲解一下双向动态rnn在处理变长序列时的应用。其实双向RNN的使用中,有一个隐含的注意事项,非常容易犯错。 

本文就在介绍下双向RNN的常用函数、用法及注意事项。

动态双向rnn有两个函数:

stack_bidirectional_dynamic_rnn

bidirectional_dynamic_rnn 

二者的实现上大同小异,放置的位置也不一样,前者放在contrib下面,而后者显得更加根红苗正,放在了tf的核心库下面。在使用时二者的返回值也有所区别。下面就来一一介绍。

示例代码

先以GRU的cell代码为例:

import tensorflow as tf

import numpy as np

tf.reset_default_graph()# 创建输入数据X = np.random.randn(2, 4, 5)# 批次 、序列长度、样本维度# 第二个样本长度为3X[1,2:] = 0seq_lengths = [4, 2]

Gstacked_rnn = []

Gstacked_bw_rnn = []

for i in range(3):

    Gstacked_rnn.append(tf.contrib.rnn.GRUCell(3))

    Gstacked_bw_rnn.append(tf.contrib.rnn.GRUCell(3))#建立前向和后向的三层RNNGmcell = tf.contrib.rnn.MultiRNNCell(Gstacked_rnn)

Gmcell_bw = tf.contrib.rnn.MultiRNNCell(Gstacked_bw_rnn)

sGbioutputs, sGoutput_state_fw, sGoutput_state_bw = tf.contrib.rnn.stack_bidirectional_dynamic_rnn([Gmcell],[Gmcell_bw], X,sequence_length=seq_lengths,

dtype=tf.float64)

Gbioutputs, Goutput_state_fw = tf.nn.bidirectional_dynamic_rnn(Gmcell,Gmcell_bw, X,sequence_length=seq_lengths,dtype=tf.float64)

是创建双向RNN的方法示例。可以看到带有stack的双向RNN会输出3个返回值,而不带有stack的双向RNN会输出2个返回值。 

这里面还要注意的是,在没有未cell初始化时必须要将dtype参数赋值。不然会报错。

代码:BiRNN输出

下面添加代码,将输出的值打印出来,看一下,这两个函数到底是输出的是啥?

#建立一个会话sess = tf.InteractiveSession()

sess.run(tf.global_variables_initializer())

sgbresult,sgstate_fw,sgstate_bw=sess.run([sGbioutputs,sGoutput_state_fw,sGoutput_state_bw])

print("全序列:\n", sgbresult[0])

print("短序列:\n", sgbresult[1])

print('Gru的状态:',len(sgstate_fw[0]),'\n',sgstate_fw[0][0],'\n',sgstate_fw[0][1],'\n',sgstate_fw[0][2])

print('Gru的状态:',len(sgstate_bw[0]),'\n',sgstate_bw[0][0],'\n',sgstate_bw[0][1],'\n',sgstate_bw[0][2])

先看一下带有stack的双向RNN输出的内容: 

我们输入的数据的批次是2,第一个序列长度是4,第二个序列长度是2. 

图中共有4部分输出,可以看到,第一部分(全序列)就是序列长度为4的结果,第二部分(短序列)就是序列长度为2的结果。由于没一层都是由3个RNN的GRU cell组成,所以每个序列的输出都为3.很显然,对于这样的结果输出,必须要将短序列后面的0去掉才可以用。 

好在该函数还有第二个输出值,GRU的状态。可以直接使用状态里的值,而不需要对原始结果进行去0的变化。

由于单个GRU本来就是没有状态的。所以该函数将最后的输出作为状态返回。该函数有两个状态返回,分别代表前向和后向。每一个方向的状态都会返回3个元素。这是因为每个方向的网络都有3层GRU组成。在使用时,一般都会取最后一个状态。图中红色部分为前向中,两个样本对应的输出,这个很好理解。

重点要看蓝色的部分,即反向的状态值对应的是原始数据中最其实的序列输入。因为是反向RNN,在反向循环时,是会把序列中最后的放在最前面,所以反向网络的生成结果就会与最开始的序列相对应。 

对于特征提取任务处理时,正向与反向的最后值都为该序列的特征,需要合并起来统一处理。但是对于下一个序列预测任务时,建议直接使用正向的RNN网络就可以了。 

如果要获取双向RNN的结果,尤其是变长情况下,通过状态拿到值直接拼接起来才是正确的做法。即便不是变长。直接使用输出值来拼接,会损失掉反向的一部分特征结果。这是需要值得注意的地方。

代码:BiRNN输出

好了。在接着看下不带stack的函数输出是什么样子的

gbresult,state_fw=sess.run([Gbioutputs,Goutput_state_fw])print("正向:\n", gbresult[0])print("反向:\n", gbresult[1])print('状态:',len(state_fw),'\n',state_fw[0],'\n',state_fw[1])  #state_fw[0]:【层,批次,cell个数】 重头到最后一个序列print(state_fw[0][-1],state_fw[1][-1])out  = np.concatenate((state_fw[0][-1],state_fw[1][-1]),axis = 1)print("拼接",out)

这次,在输出基本内容基础上,直接将结果拼接起来。上面代码运行后会输出如下内容。

同样正向用红色,反向用蓝色。改函数返回的输出值,没有将正反向拼接。输出的状态虽然是一个值,但是里面有两个元素,一个代表正向状态,一个代表反向状态. 

从输出中可以看到,最后一行实现了最终结果的真正拼接。在使用双向rnn时可以按照上面的例子代码将其状态拼接成一条完整输出,然后在进行处理。

代码:LSTM的双向RNN

类似的如果想使用LSTM cell。将前面的GRU部分替换即可,代码如下:

stacked_rnn = []stacked_bw_rnn = []for iinrange(3):    stacked_rnn.append(tf.contrib.rnn.LSTMCell(3))    stacked_bw_rnn.append(tf.contrib.rnn.LSTMCell(3))mcell = tf.contrib.rnn.MultiRNNCell(stacked_rnn)mcell_bw = tf.contrib.rnn.MultiRNNCell(stacked_bw_rnn)    bioutputs, output_state_fw, output_state_bw = tf.contrib.rnn.stack_bidirectional_dynamic_rnn([mcell],[mcell_bw],X,sequence_length=seq_lengths,                                              

dtype=tf.float64)bioutputs, output_state_fw = tf.nn.bidirectional_dynamic_rnn(mcell,mcell_bw,X,sequence_length=seq_lengths,                                              dtype=tf.float64)

至于输出的内容是什么,可以按照前面GRU的输出部分显示出来自己观察。如何拼接,也可以参照GRU的例子来做。

通过将正反向的状态拼接起来才可以获得双向RNN的最终输出特征。千万不要直接拿着输出不加处理的来进行后续的运算,这会损失一大部分的运算特征。

该部分内容属于《深度学习之TensorFlow入门、原理与进阶实战》一书的内容补充。关于RNN的更多介绍可以参看书中第九章的详细内容。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,056评论 5 474
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 84,842评论 2 378
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 148,938评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,296评论 1 272
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,292评论 5 363
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,413评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,824评论 3 393
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,493评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,686评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,502评论 2 318
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,553评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,281评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,820评论 3 305
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,873评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,109评论 1 258
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,699评论 2 348
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,257评论 2 341

推荐阅读更多精彩内容