安大大 + 原创作品转载请注明出处 + 《Linux操作系统分析》MOOC课程
进程控制块PCB——task_struct
为了管理进程,内核必须对每个进程进行清晰的描述,进程描述符提供了内核所需了解的进程信息。
- struct task_struct数据结构很庞大
- Linux进程的状态与操作系统原理中的描述的进程状态似乎有所不同,比如就绪状态和运行状态都是TASK_RUNNING,为什么呢?
- 进程的标示pid
- 所有进程链表struct list_head tasks;
- 内核的双向循环链表的实现方法 - 一个更简略的双向循环链表
- 程序创建的进程具有父子关系,在编程时往往需要引用这样的父子关系。进程描述符中有几个域用来表示这样的关系
- Linux为每个进程分配一个8KB大小的内存区域,用于存放该进程两个不同的数据结构:Thread_info和进程的内核堆栈
- 进程处于内核态时使用,�不同于用户态堆栈,即PCB中指定了内核栈,那为什么PCB中没有用户态堆栈?用户态堆栈是怎么设定的?
- 内核控制路径所用的堆栈�很少,因此对栈和Thread_info�来说,8KB足够了
- struct thread_struct thread; //CPU-specific state of this task
- 文件系统和文件描述符
-
内存管理——进程的地址空间
参考资料 - ProgramAndProcess
进程的描述
操作系统的三大功能:进程管理,内存管理和文件系统。最核心的是进程管理。
进程描述符 task_struct数据结构
理解部分在代码注释中
struct task_struct {
volatile long state; /*运行状态 -1 unrunnable, 0 runnable, >0 stopped */
void *stack; //指定进程的内核堆栈
atomic_t usage;
unsigned int flags; /* 每个进程的标识符 per process flags, defined below */
unsigned int ptrace;
#ifdef CONFIG_SMP
//条件编译,多处理器用
struct llist_node wake_entry;
int on_cpu;
struct task_struct *last_wakee;
unsigned long wakee_flips;
unsigned long wakee_flip_decay_ts;
int wake_cpu;
#endif
//下边一段是与优先级调度相关 ,在不同的环境下不同的调度方式和标识
int on_rq; //运行队列run queue
int prio, static_prio, normal_prio;
unsigned int rt_priority;
const struct sched_class *sched_class;
struct sched_entity se;
struct sched_rt_entity rt;
#ifdef CONFIG_CGROUP_SCHED
struct task_group *sched_task_group;
#endif
struct sched_dl_entity dl;
#ifdef CONFIG_PREEMPT_NOTIFIERS
/* list of struct preempt_notifier: */
struct hlist_head preempt_notifiers;
#endif
#ifdef CONFIG_BLK_DEV_IO_TRACE
unsigned int btrace_seq;
#endif
unsigned int policy;
int nr_cpus_allowed;
cpumask_t cpus_allowed;
#ifdef CONFIG_PREEMPT_RCU
int rcu_read_lock_nesting;
union rcu_special rcu_read_unlock_special;
struct list_head rcu_node_entry;
#endif /* #ifdef CONFIG_PREEMPT_RCU */
#ifdef CONFIG_TREE_PREEMPT_RCU
struct rcu_node *rcu_blocked_node;
#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
#ifdef CONFIG_TASKS_RCU
unsigned long rcu_tasks_nvcsw;
bool rcu_tasks_holdout;
struct list_head rcu_tasks_holdout_list;
int rcu_tasks_idle_cpu;
#endif /* #ifdef CONFIG_TASKS_RCU */
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
struct sched_info sched_info;
#endif
struct list_head tasks; //进程的链表,当前所有的进程都用链表连起来,是一个双向循环链表
#ifdef CONFIG_SMP
struct plist_node pushable_tasks;
struct rb_node pushable_dl_tasks;
#endif
struct mm_struct *mm, *active_mm;//和内存管理,进程的地址空间相关,每个进程的代码段,数据段都和这个相关
#ifdef CONFIG_COMPAT_BRK
unsigned brk_randomized:1;
#endif
/* per-thread vma caching */
u32 vmacache_seqnum;
struct vm_area_struct *vmacache[VMACACHE_SIZE];
#if defined(SPLIT_RSS_COUNTING)
struct task_rss_stat rss_stat;
#endif
/* task state 任务的状态*/
int exit_state;
int exit_code, exit_signal;
int pdeath_signal; /* The signal sent when the parent dies */
unsigned int jobctl; /* JOBCTL_*, siglock protected */
/* Used for emulating ABI behavior of previous Linux versions */
unsigned int personality;
unsigned in_execve:1; /* Tell the LSMs that the process is doing an
* execve */
unsigned in_iowait:1;
/* Revert to default priority/policy when forking */
unsigned sched_reset_on_fork:1;
unsigned sched_contributes_to_load:1;
unsigned long atomic_flags; /* Flags needing atomic access. */
pid_t pid; //进程的pid,来标识某一个进程
pid_t tgid;
#ifdef CONFIG_CC_STACKPROTECTOR
/* Canary value for the -fstack-protector gcc feature */
unsigned long stack_canary;
#endif
/* 下边是进程的父子关系管理,都是通过双向链表链接的
* pointers to (original) parent process, youngest child, younger sibling,
* older sibling, respectively. (p->father can be replaced with
* p->real_parent->pid)
*/
struct task_struct __rcu *real_parent; /* real parent process */
struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
/*
* children/sibling forms the list of my natural children
*/
struct list_head children; /* list of my children */
struct list_head sibling; /* linkage in my parent's children list */
struct task_struct *group_leader; /* threadgroup leader */
/*
* ptraced is the list of tasks this task is using ptrace on.
* This includes both natural children and PTRACE_ATTACH targets.
* p->ptrace_entry is p's link on the p->parent->ptraced list.
*/
struct list_head ptraced; //调试用
struct list_head ptrace_entry;
/* PID/PID hash table linkage. */
struct pid_link pids[PIDTYPE_MAX]; //pid的哈希表,用来方便查找
struct list_head thread_group;
struct list_head thread_node;
struct completion *vfork_done; /* for vfork() */
int __user *set_child_tid; /* CLONE_CHILD_SETTID */
int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
cputime_t utime, stime, utimescaled, stimescaled; //下边是和时间相关的代码
cputime_t gtime;
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
struct cputime prev_cputime;
#endif
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
seqlock_t vtime_seqlock;
unsigned long long vtime_snap;
enum {
VTIME_SLEEPING = 0,
VTIME_USER,
VTIME_SYS,
} vtime_snap_whence;
#endif
unsigned long nvcsw, nivcsw; /* context switch counts */
u64 start_time; /* monotonic time in nsec */
u64 real_start_time; /* boot based time in nsec */
/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
unsigned long min_flt, maj_flt;
struct task_cputime cputime_expires;
struct list_head cpu_timers[3];
/* process credentials */
const struct cred __rcu *real_cred; /* objective and real subjective task
* credentials (COW) */
const struct cred __rcu *cred; /* effective (overridable) subjective task
* credentials (COW) */
char comm[TASK_COMM_LEN]; /* executable name excluding path
- access with [gs]et_task_comm (which lock
it with task_lock())
- initialized normally by setup_new_exec */
/* file system info */
int link_count, total_link_count;
#ifdef CONFIG_SYSVIPC
/* ipc stuff */
struct sysv_sem sysvsem;
struct sysv_shm sysvshm;
#endif
#ifdef CONFIG_DETECT_HUNG_TASK
/* hung task detection */
unsigned long last_switch_count;
#endif
/* CPU-specific state of this task 和CPU相关的状态,进程上下文切换时起着关键作用*/
struct thread_struct thread;
/* filesystem information 文件系统相关的数据结构*/
struct fs_struct *fs;
/* open file information 打开的文件描述符列表*/
struct files_struct *files;
/* namespaces */
struct nsproxy *nsproxy;
/* signal handlers 和信号处理相关的*/
struct signal_struct *signal;
struct sighand_struct *sighand;
sigset_t blocked, real_blocked;
sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
struct sigpending pending;
unsigned long sas_ss_sp;
size_t sas_ss_size;
int (*notifier)(void *priv);
void *notifier_data;
sigset_t *notifier_mask;
struct callback_head *task_works;
struct audit_context *audit_context;
#ifdef CONFIG_AUDITSYSCALL
kuid_t loginuid;
unsigned int sessionid;
#endif
struct seccomp seccomp;
/* Thread group tracking */
u32 parent_exec_id;
u32 self_exec_id;
/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
* mempolicy */
spinlock_t alloc_lock;
/* Protection of the PI data structures: */
raw_spinlock_t pi_lock;
#ifdef CONFIG_RT_MUTEXES //mutexes互斥锁,互斥器
/* PI waiters blocked on a rt_mutex held by this task */
struct rb_root pi_waiters;
struct rb_node *pi_waiters_leftmost;
/* Deadlock detection and priority inheritance handling */
struct rt_mutex_waiter *pi_blocked_on;
#endif
#ifdef CONFIG_DEBUG_MUTEXES
/* mutex deadlock detection */
struct mutex_waiter *blocked_on;
#endif
#ifdef CONFIG_TRACE_IRQFLAGS //和调试相关
unsigned int irq_events;
unsigned long hardirq_enable_ip;
unsigned long hardirq_disable_ip;
unsigned int hardirq_enable_event;
unsigned int hardirq_disable_event;
int hardirqs_enabled;
int hardirq_context;
unsigned long softirq_disable_ip;
unsigned long softirq_enable_ip;
unsigned int softirq_disable_event;
unsigned int softirq_enable_event;
int softirqs_enabled;
int softirq_context;
#endif
#ifdef CONFIG_LOCKDEP
# define MAX_LOCK_DEPTH 48UL
u64 curr_chain_key;
int lockdep_depth;
unsigned int lockdep_recursion;
struct held_lock held_locks[MAX_LOCK_DEPTH];
gfp_t lockdep_reclaim_gfp;
#endif
/* journalling filesystem info */
void *journal_info;
/* stacked block device info */
struct bio_list *bio_list;
#ifdef CONFIG_BLOCK
/* stack plugging */
struct blk_plug *plug;
#endif
/* VM state */
struct reclaim_state *reclaim_state;
struct backing_dev_info *backing_dev_info;
struct io_context *io_context;
unsigned long ptrace_message;
siginfo_t *last_siginfo; /* For ptrace use. */
struct task_io_accounting ioac;
#if defined(CONFIG_TASK_XACCT)
u64 acct_rss_mem1; /* accumulated rss usage */
u64 acct_vm_mem1; /* accumulated virtual memory usage */
cputime_t acct_timexpd; /* stime + utime since last update */
#endif
#ifdef CONFIG_CPUSETS
nodemask_t mems_allowed; /* Protected by alloc_lock */
seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
int cpuset_mem_spread_rotor;
int cpuset_slab_spread_rotor;
#endif
#ifdef CONFIG_CGROUPS
/* Control Group info protected by css_set_lock */
struct css_set __rcu *cgroups;
/* cg_list protected by css_set_lock and tsk->alloc_lock */
struct list_head cg_list;
#endif
#ifdef CONFIG_FUTEX
struct robust_list_head __user *robust_list;
#ifdef CONFIG_COMPAT
struct compat_robust_list_head __user *compat_robust_list;
#endif
struct list_head pi_state_list;
struct futex_pi_state *pi_state_cache;
#endif
#ifdef CONFIG_PERF_EVENTS
struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
struct mutex perf_event_mutex;
struct list_head perf_event_list;
#endif
#ifdef CONFIG_DEBUG_PREEMPT
unsigned long preempt_disable_ip;
#endif
#ifdef CONFIG_NUMA
struct mempolicy *mempolicy; /* Protected by alloc_lock */
short il_next;
short pref_node_fork;
#endif
#ifdef CONFIG_NUMA_BALANCING
int numa_scan_seq;
unsigned int numa_scan_period;
unsigned int numa_scan_period_max;
int numa_preferred_nid;
unsigned long numa_migrate_retry;
u64 node_stamp; /* migration stamp */
u64 last_task_numa_placement;
u64 last_sum_exec_runtime;
struct callback_head numa_work;
struct list_head numa_entry;
struct numa_group *numa_group;
/*
* Exponential decaying average of faults on a per-node basis.
* Scheduling placement decisions are made based on the these counts.
* The values remain static for the duration of a PTE scan
*/
unsigned long *numa_faults_memory;
unsigned long total_numa_faults;
/*
* numa_faults_buffer records faults per node during the current
* scan window. When the scan completes, the counts in
* numa_faults_memory decay and these values are copied.
*/
unsigned long *numa_faults_buffer_memory;
/*
* Track the nodes the process was running on when a NUMA hinting
* fault was incurred.
*/
unsigned long *numa_faults_cpu;
unsigned long *numa_faults_buffer_cpu;
/*
* numa_faults_locality tracks if faults recorded during the last
* scan window were remote/local. The task scan period is adapted
* based on the locality of the faults with different weights
* depending on whether they were shared or private faults
*/
unsigned long numa_faults_locality[2];
unsigned long numa_pages_migrated;
#endif /* CONFIG_NUMA_BALANCING */
struct rcu_head rcu;
/*
* cache last used pipe for splice 和管道相关的
*/
struct pipe_inode_info *splice_pipe;
struct page_frag task_frag;
#ifdef CONFIG_TASK_DELAY_ACCT
struct task_delay_info *delays;
#endif
#ifdef CONFIG_FAULT_INJECTION
int make_it_fail;
#endif
/*
* when (nr_dirtied >= nr_dirtied_pause), it's time to call
* balance_dirty_pages() for some dirty throttling pause
*/
int nr_dirtied;
int nr_dirtied_pause;
unsigned long dirty_paused_when; /* start of a write-and-pause period */
#ifdef CONFIG_LATENCYTOP
int latency_record_count;
struct latency_record latency_record[LT_SAVECOUNT];
#endif
/*
* time slack values; these are used to round up poll() and
* select() etc timeout values. These are in nanoseconds.
*/
unsigned long timer_slack_ns;
unsigned long default_timer_slack_ns;
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
/* Index of current stored address in ret_stack */
int curr_ret_stack;
/* Stack of return addresses for return function tracing */
struct ftrace_ret_stack *ret_stack;
/* time stamp for last schedule */
unsigned long long ftrace_timestamp;
/*
* Number of functions that haven't been traced
* because of depth overrun.
*/
atomic_t trace_overrun;
/* Pause for the tracing */
atomic_t tracing_graph_pause;
#endif
#ifdef CONFIG_TRACING
/* state flags for use by tracers */
unsigned long trace;
/* bitmask and counter of trace recursion */
unsigned long trace_recursion;
#endif /* CONFIG_TRACING */
#ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
unsigned int memcg_kmem_skip_account;
struct memcg_oom_info {
struct mem_cgroup *memcg;
gfp_t gfp_mask;
int order;
unsigned int may_oom:1;
} memcg_oom;
#endif
#ifdef CONFIG_UPROBES
struct uprobe_task *utask;
#endif
#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
unsigned int sequential_io;
unsigned int sequential_io_avg;
#endif
};
当前任务的CPU相关的状态,它在进程上下文切换的时候起着关键的作用,其中有sp、ip以及其它的和CPU相关的状态:
struct thread_struct {
/* Cached TLS descriptors: */
struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES];
unsigned long sp0;
unsigned long sp;
#ifdef CONFIG_X86_32
unsigned long sysenter_cs;
#else
unsigned long usersp; /* Copy from PDA */
unsigned short es;
unsigned short ds;
unsigned short fsindex;
unsigned short gsindex;
#endif
#ifdef CONFIG_X86_32
unsigned long ip;
#endif
#ifdef CONFIG_X86_64
unsigned long fs;
#endif
unsigned long gs;
/* Save middle states of ptrace breakpoints */
struct perf_event *ptrace_bps[HBP_NUM];
/* Debug status used for traps, single steps, etc... */
unsigned long debugreg6;
/* Keep track of the exact dr7 value set by the user */
unsigned long ptrace_dr7;
/* Fault info: */
unsigned long cr2;
unsigned long trap_nr;
unsigned long error_code;
/* floating point and extended processor state */
struct fpu fpu;
#ifdef CONFIG_X86_32
/* Virtual 86 mode info */
struct vm86_struct __user *vm86_info;
unsigned long screen_bitmap;
unsigned long v86flags;
unsigned long v86mask;
unsigned long saved_sp0;
unsigned int saved_fs;
unsigned int saved_gs;
#endif
/* IO permissions: */
unsigned long *io_bitmap_ptr;
unsigned long iopl;
/* Max allowed port in the bitmap, in bytes: */
unsigned io_bitmap_max;
/*
* fpu_counter contains the number of consecutive context switches
* that the FPU is used. If this is over a threshold, the lazy fpu
* saving becomes unlazy to save the trap. This is an unsigned char
* so that after 256 times the counter wraps and the behavior turns
* lazy again; this to deal with bursty apps that only use FPU for
* a short time
*/
unsigned char fpu_counter;
};
进程的创建
fork一个子进程的代码。在MenuOS里fork调用的是sys_clone,但是最终都是调用的do_fork.
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
int main(int argc, char * argv[])
{
int pid;
/* fork another process */
pid = fork();
if (pid < 0)
{
/* error occurred */
fprintf(stderr,"Fork Failed!");
exit(-1);
}
else if (pid == 0)
{
/* child process */
printf("This is Child Process!\n");
}
else
{
/* parent process */
printf("This is Parent Process!\n");
/* parent will wait for the child to complete*/
wait(NULL);
printf("Child Complete!\n");
}
}
创建一个新进程在内核中的执行过程
- fork、vfork和clone三个系统调用都可以创建一个新进程,而且都是通过调用do_fork来实现进程的创建;
- Linux通过复制父进程来创建一个新进程,那么这就给我们理解这一个过程提供一个想象的框架:
- 复制一个PCB——task_struct
err = arch_dup_task_struct(tsk, orig);//复制父进程的task_struct数据结构
- 要给新进程分配一个新的内核堆栈
ti = alloc_thread_info_node(tsk, node);
tsk->stack = ti;//分配内核堆栈
setup_thread_stack(tsk, orig); //这里只是复制thread_info,而非复制内核堆栈
- 要修改复制过来的进程数据,比如pid、进程链表等等都要改改吧,见copy_process内部。
- 从用户态的代码看fork();函数返回了两次,即在父子进程中各返回一次,父进程从系统调用中返回比较容易理解,子进程从系统调用中返回,那它在系统调用处理过程中的哪里开始执行的呢?这就涉及子进程的内核堆栈数据状态和task_struct中thread记录的sp和ip的一致性问题,这是在哪里设定的?copy_thread in copy_process
*childregs = *current_pt_regs(); //复制内核堆栈
childregs->ax = 0; //为什么子进程的fork返回0,这里就是原因!
p->thread.sp = (unsigned long) childregs; //调度到子进程时的内核栈顶
p->thread.ip = (unsigned long) ret_from_fork; //调度到子进程时的第一条指令地址
进程的创建概览及fork一个进程的用户态代码
创建新进程是通过复制当前进程来实现的
进程的创建是复制当前进程的进程信息,复制出来一个进程,即fork出一个进程。这个新创建出来的子进程和父进程的绝大部分信息是一样的,但是也有不同的,比如说pid,链表,内核堆栈,记录ip、sp的thread等。
设想创建新进程的过程中需要做哪些事
父进程创建子进程,会在一个地方复制父进程的PCB(task_struct),同时还有很多地方修改这个PCB,因为子进程有自己独立的信息,还会有一个地方分配一个新的内核堆栈。因为子进程是fork返回到用户态,所以它的内核堆栈中的一部分也要从父进程中拷贝过来,否则内核堆栈无法返回。此外,根据拷贝的内核堆栈的状况,设定自己的eip和esp的位置,如果位置不对,出栈的时候,执行到iret时,会和堆栈不一致。
系统调用内核处理函数sys_fork,sys_clone,sys_vfork
linux-3.18.6/kernel/fork.c
#ifdef __ARCH_WANT_SYS_FORK
SYSCALL_DEFINE0(fork)
{
#ifdef CONFIG_MMU
return do_fork(SIGCHLD, 0, 0, NULL, NULL);
#else
/* can not support in nommu mode */
return -EINVAL;
#endif
}
#endif
#ifdef __ARCH_WANT_SYS_VFORK
SYSCALL_DEFINE0(vfork)
{
return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
0, NULL, NULL);
}
#endif
几种带不同参数的clone:
#ifdef __ARCH_WANT_SYS_CLONE
#ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
int __user *, parent_tidptr,
int, tls_val,
int __user *, child_tidptr)
#elif defined(CONFIG_CLONE_BACKWARDS2)
SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
int __user *, parent_tidptr,
int __user *, child_tidptr,
int, tls_val)
#elif defined(CONFIG_CLONE_BACKWARDS3)
SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
int, stack_size,
int __user *, parent_tidptr,
int __user *, child_tidptr,
int, tls_val)
#else
SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
int __user *, parent_tidptr,
int __user *, child_tidptr,
int, tls_val)
#endif
{
return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
}
#endif
可以看到在用户态不管调用这三个系统调用中的哪一个,最后都调用了do_fork。
do_fork:
/*
* Ok, this is the main fork-routine.//fork的主要的处理例程
*
* It copies the process, and if successful kick-starts
* it and waits for it to finish using the VM if required.
*/
long do_fork(unsigned long clone_flags,
unsigned long stack_start,
unsigned long stack_size,
int __user *parent_tidptr,
int __user *child_tidptr)
{
struct task_struct *p;
int trace = 0;
long nr;
/*
* Determine whether and which event to report to ptracer. When
* called from kernel_thread or CLONE_UNTRACED is explicitly
* requested, no event is reported; otherwise, report if the event
* for the type of forking is enabled.
*/
if (!(clone_flags & CLONE_UNTRACED)) {
if (clone_flags & CLONE_VFORK)
trace = PTRACE_EVENT_VFORK;
else if ((clone_flags & CSIGNAL) != SIGCHLD)
trace = PTRACE_EVENT_CLONE;
else
trace = PTRACE_EVENT_FORK;
if (likely(!ptrace_event_enabled(current, trace)))
trace = 0;
}
p = copy_process(clone_flags, stack_start, stack_size,
child_tidptr, NULL, trace); //创建一个进程内容的主要代码
/*
* Do this prior waking up the new thread - the thread pointer
* might get invalid after that point, if the thread exits quickly.
*/
if (!IS_ERR(p)) {
struct completion vfork;
struct pid *pid;
trace_sched_process_fork(current, p);
pid = get_task_pid(p, PIDTYPE_PID);
nr = pid_vnr(pid);
if (clone_flags & CLONE_PARENT_SETTID)
put_user(nr, parent_tidptr);
if (clone_flags & CLONE_VFORK) {
p->vfork_done = &vfork;
init_completion(&vfork);
get_task_struct(p);
}
wake_up_new_task(p);
/* forking complete and child started to run, tell ptracer */
if (unlikely(trace))
ptrace_event_pid(trace, pid);
if (clone_flags & CLONE_VFORK) {
if (!wait_for_vfork_done(p, &vfork))
ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
}
put_pid(pid);
} else {
nr = PTR_ERR(p);
}
return nr;
}
static struct task_struct *copy_process(unsigned long clone_flags,
unsigned long stack_start,
unsigned long stack_size,
int __user *child_tidptr,
struct pid *pid,
int trace)
{
......
出错处理
......
p = dup_task_struct(current);//复制task_struct,p指向了子进程的进程描述符
......
对子进程的初始化,修改
......
/* copy all the process information */
shm_init_task(p);
retval = copy_semundo(clone_flags, p);
if (retval)
goto bad_fork_cleanup_audit;
retval = copy_files(clone_flags, p);//初始化file
if (retval)
goto bad_fork_cleanup_semundo;
retval = copy_fs(clone_flags, p);//初始化文件系统
if (retval)
goto bad_fork_cleanup_files;
retval = copy_sighand(clone_flags, p);
if (retval)
goto bad_fork_cleanup_fs;
retval = copy_signal(clone_flags, p);
if (retval)
goto bad_fork_cleanup_sighand;
retval = copy_mm(clone_flags, p);//初始化内存
if (retval)
goto bad_fork_cleanup_signal;
retval = copy_namespaces(clone_flags, p);
if (retval)
goto bad_fork_cleanup_mm;
retval = copy_io(clone_flags, p);//初始化io
if (retval)
goto bad_fork_cleanup_namespaces;
retval = copy_thread(clone_flags, stack_start, stack_size, p);//拷贝内核堆栈数据和指定新进程的第一条指令地址
if (retval)
goto bad_fork_cleanup_io;
if (pid != &init_struct_pid) {
retval = -ENOMEM;
pid = alloc_pid(p->nsproxy->pid_ns_for_children);
if (!pid)
goto bad_fork_cleanup_io;
}
p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
......
}
static struct task_struct *dup_task_struct(struct task_struct *orig)
{
struct task_struct *tsk;
struct thread_info *ti;
int node = tsk_fork_get_node(orig);
int err;
tsk = alloc_task_struct_node(node);//alloc一个结点
if (!tsk)
return NULL;
ti = alloc_thread_info_node(tsk, node);//分配内核堆栈空间的效果
if (!ti)
goto free_tsk;
err = arch_dup_task_struct(tsk, orig);//执行了复制
if (err)
goto free_ti;
tsk->stack = ti;
#ifdef CONFIG_SECCOMP
/*
* We must handle setting up seccomp filters once we're under
* the sighand lock in case orig has changed between now and
* then. Until then, filter must be NULL to avoid messing up
* the usage counts on the error path calling free_task.
*/
tsk->seccomp.filter = NULL;
#endif
setup_thread_stack(tsk, orig);//复制task_thread_info信息
clear_user_return_notifier(tsk);
clear_tsk_need_resched(tsk);
set_task_stack_end_magic(tsk);
#ifdef CONFIG_CC_STACKPROTECTOR
tsk->stack_canary = get_random_int();
#endif
/*
* One for us, one for whoever does the "release_task()" (usually
* parent)
*/
atomic_set(&tsk->usage, 2);
#ifdef CONFIG_BLK_DEV_IO_TRACE
tsk->btrace_seq = 0;
#endif
tsk->splice_pipe = NULL;
tsk->task_frag.page = NULL;
account_kernel_stack(ti, 1);
return tsk;
free_ti:
free_thread_info(ti);
free_tsk:
free_task_struct(tsk);
return NULL;
}
int __weak arch_dup_task_struct(struct task_struct *dst,
struct task_struct *src)
{
*dst = *src;
return 0;
}
/*
* Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
* kmemcache based allocator.
*/
# if THREAD_SIZE >= PAGE_SIZE
static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
int node)
{
//创建了两个页,一个存放thread_info,另一部分从高地址指向低地址的内核堆栈
struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP,
THREAD_SIZE_ORDER);
return page ? page_address(page) : NULL;
}
创建的新进程是从哪里开始执行的
int copy_thread(unsigned long clone_flags, unsigned long sp,
unsigned long arg, struct task_struct *p)
{
struct pt_regs *childregs = task_pt_regs(p);//pt_regs
struct task_struct *tsk;
int err;
p->thread.sp = (unsigned long) childregs;
p->thread.sp0 = (unsigned long) (childregs+1);
memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
if (unlikely(p->flags & PF_KTHREAD)) {
/* kernel thread */
memset(childregs, 0, sizeof(struct pt_regs));
p->thread.ip = (unsigned long) ret_from_kernel_thread;
task_user_gs(p) = __KERNEL_STACK_CANARY;
childregs->ds = __USER_DS;
childregs->es = __USER_DS;
childregs->fs = __KERNEL_PERCPU;
childregs->bx = sp; /* function */
childregs->bp = arg;
childregs->orig_ax = -1;
childregs->cs = __KERNEL_CS | get_kernel_rpl();
childregs->flags = X86_EFLAGS_IF | X86_EFLAGS_FIXED;
p->thread.io_bitmap_ptr = NULL;
return 0;
}
*childregs = *current_pt_regs();
childregs->ax = 0;
if (sp)
childregs->sp = sp;
p->thread.ip = (unsigned long) ret_from_fork;
task_user_gs(p) = get_user_gs(current_pt_regs());
p->thread.io_bitmap_ptr = NULL;
tsk = current;
err = -ENOMEM;
if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
IO_BITMAP_BYTES, GFP_KERNEL);
if (!p->thread.io_bitmap_ptr) {
p->thread.io_bitmap_max = 0;
return -ENOMEM;
}
set_tsk_thread_flag(p, TIF_IO_BITMAP);
}
err = 0;
/*
* Set a new TLS for the child thread?
*/
if (clone_flags & CLONE_SETTLS)
err = do_set_thread_area(p, -1,
(struct user_desc __user *)childregs->si, 0);
if (err && p->thread.io_bitmap_ptr) {
kfree(p->thread.io_bitmap_ptr);
p->thread.io_bitmap_max = 0;
}
return err;
}
int指令和SAVE_ALL压到内核堆栈的内容
复制内核堆栈只复制下边这些
struct pt_regs {
unsigned long bx;
unsigned long cx;
unsigned long dx;
unsigned long si;
unsigned long di;
unsigned long bp;
unsigned long ax;//传递的系统调用号
unsigned long ds;
unsigned long es;
unsigned long fs;
unsigned long gs;
unsigned long orig_ax;
unsigned long ip;
unsigned long cs;
unsigned long flags;
unsigned long sp;
unsigned long ss;
};
ENTRY(ret_from_fork)
CFI_STARTPROC
pushl_cfi %eax
call schedule_tail
GET_THREAD_INFO(%ebp)
popl_cfi %eax
pushl_cfi $0x0202 # Reset kernel eflags
popfl_cfi
jmp syscall_exit #会跳转到system_call里边的syscall_exit,继续向下进行
CFI_ENDPROC
END(ret_from_fork)
ENTRY(system_call)
RING0_INT_FRAME # can't unwind into user space anyway
ASM_CLAC
pushl_cfi %eax # save orig_eax
SAVE_ALL
GET_THREAD_INFO(%ebp)
# system call tracing in operation / emulation
testl $_TIF_WORK_SYSCALL_ENTRY,TI_flags(%ebp)
jnz syscall_trace_entry
cmpl $(NR_syscalls), %eax
jae syscall_badsys
syscall_call:
call *sys_call_table(,%eax,4)
syscall_after_call:
movl %eax,PT_EAX(%esp) # store the return value
syscall_exit:
LOCKDEP_SYS_EXIT
DISABLE_INTERRUPTS(CLBR_ANY) # make sure we don't miss an interrupt
# setting need_resched or sigpending
# between sampling and the iret
TRACE_IRQS_OFF
movl TI_flags(%ebp), %ecx
testl $_TIF_ALLWORK_MASK, %ecx # current->work
jne syscall_exit_work
restore_all:
TRACE_IRQS_IRET
restore_all_notrace:
参考这个"关于kernel_thread的补充说明"分析的很透彻
使用gdb跟踪创建新进程的过程
在MenuOS里增加一个fork命令,用带有fork的test_fork.c把test.c给覆盖掉
编译之后,可以看到列表中多了fork命令。执行fork命令之后,它会创建一个子进程。父进程和子进程都输出了信息。
使用gdb跟踪:
设置几个断点:
继续执行,执行到了do_fork