Given a non-negative integer n, count all numbers with unique digits, x, where 0 ≤ x < 10n.
Example:
Given n = 2, return 91. (The answer should be the total numbers in the range of 0 ≤ x < 100, excluding [11,22,33,44,55,66,77,88,99])
Solution1:Backtracking
总结见:http://www.jianshu.com/p/883fdda93a66
思路:Backtracking基本套路
Time Complexity: O(10!) worst case, or O(n!) if n < 10.
Space Complexity: O(10)
Solution2:DP
思路:
f(1) = 10,
f(2) = 9 * 9,
f(3) = f(2) * 8,
f(4) = f(3) * 7,
...,
f(10) = f(9) * 1
f(11) = 0
result = sum of f(1...10)
Time Complexity: O(1) Space Complexity: O(1)
Solution1 Code:
public class Solution {
public static int countNumbersWithUniqueDigits(int n) {
if (n > 10) {
return countNumbersWithUniqueDigits(10);
}
int count = 1; // x == 0
long max = (long) Math.pow(10, n);
boolean[] used = new boolean[10];
// outerloop to avoid leading zero
for (int i = 1; i < 10; i++) {
used[i] = true;
count += search(i, max, used);
used[i] = false;
}
return count;
}
private static int search(long prev, long max, boolean[] used) {
int count = 0;
if (prev < max) {
count += 1;
} else {
return count;
}
for (int i = 0; i < 10; i++) {
if (!used[i]) {
used[i] = true;
long cur = 10 * prev + i;
count += search(cur, max, used);
used[i] = false;
}
}
return count;
}
}
Solution2 Code:
class Solution {
public int countNumbersWithUniqueDigits(int n) {
if (n == 0) return 1;
int res = 10;
int uniqueDigits = 9;
int availableNumber = 9;
while (n-- > 1 && availableNumber > 0) {
uniqueDigits = uniqueDigits * availableNumber;
res += uniqueDigits;
availableNumber--;
}
return res;
}
}