【C# 数据结构】图的最小生成树 普利姆(Prim)算法

结合邻接矩阵使用Prim算法求得图的最小生成树

顶点

class Vertex
{
    public int data;
    public Vertex(int data)
    {
       this.data = data;
    }
}

class Edge
{
    public int tail;
    public int head;
    public int width;
    public Edge(int tail, int head, int width)
    {
        this.tail = tail;
        this.head = head;
        this.width = width;
    }
}

创建邻接矩阵:

class PrimMinTree
{
    int[,] matrix;
    int vexCount;
    /// <summary>
    /// 构造无向图邻接矩阵
    /// </summary>
    /// <param name="vex"></param>
    /// <param name="edge"></param>
    public void GraphAdjacencyMatrix(Vertex[] vex, Edge[] edge)
    {
        matrix = new int[vex.Length, vex.Length];
        for (int i = 0; i < vex.Length; i++)
        {
            for (int j = 0; j < vex.Length; j++)
            {
                if (i != j)
                {
                    matrix[i, j] = 1000;
                }
            }
        }
        vexCount = vex.Length;

        for (int i = 0; i < edge.Length; i++)
        {
            int tail = edge[i].tail;
            int head = edge[i].head;
            matrix[tail, head] = edge[i].width;
            matrix[head, tail] = edge[i].width;
        }


        //打印邻接矩阵
        Console.WriteLine("邻接矩阵:");
        Console.Write("\t ");
        for (int i = 0; i < vex.Length; i++)
        {
            Console.Write(vex[i].data + "\t ");
        }
        Console.WriteLine("\n\n");
        for (int i = 0; i < vex.Length; i++)
        {
            Console.Write(vex[i].data + "\t");
            for (int j = 0; j < vex.Length; j++)
            {
                Console.Write("[" + matrix[i, j] + "]\t");
            }
            Console.WriteLine("\n\n");
        }
    }

最小生成树普利姆(Prim)算法:

    public void Prim(int vex)
    {
        //这个数组以数组的索引代表所有顶点的序号,值代表已经找到的最小生成树中,与当前顶点(索引)最近的那个顶点
        //比如说,最开始默认找到0号顶点,那么与所有顶点最近的就是0号顶点,因此整个数组的值都为0
        int[] adjVex = new int[vexCount];
        //这个数组以数组的索引代表所有顶点的序号,值代表已经找到的最小生成树中,与当前顶点(索引)距离最近(权重最小)的值
        //至于距离某点最近的已找到的点,可以根据索引在adjVex中找到
        //如果是顶点自己到自己,则值为0,代表该点已经被找到
        int[] lowCost = new int[vexCount];

        //已开始顶点,初始化adjVex和lowCost
        //此时找到的顶点只有参数提供的vex,因此距离所有点最近的也只有vex,因此adjVex所有点都为vex
        //lowCost[vex]代表自己到自己的权重,设置为0,因为vex是第一个被找到的,后序不允许在找它。
        for (int i = 0; i < vexCount; i++)
        {
            adjVex[i] = vex;
            lowCost[i] = matrix[vex, i];
        }
        Console.WriteLine("Prim算法最小生成树:");
        //n个顶点有n-1条线,所以循环n-1次
        for (int i = 0; i < vexCount - 1; i++)
        {
            int min = 1000;//默认最小值
            int j = 0;
            int k = 0;
            //这层循环会找到距离已找到的生成树距离最近(权重最小)的值,用K记录最小的索引值(也就是顶点)
            while (j < vexCount)
            {
                if (lowCost[j] != 0 && lowCost[j] < min)
                {
                    min = lowCost[j];
                    k = j;
                }
                j++;
            }

            Console.Write("(" + adjVex[k] + "," + k + ") ");

            lowCost[k] = 0;//表示k顶点现在也是被找到的顶点集合

            //这层循环判断剩余顶点到k与没有k之前的最小生成树之间的距离大小(权重)
            for (j = 0; j < vexCount; j++)
            {
                //如果到其他某顶点到k的距离小于之前到生成树的距离,则修改lowCost的值,并把adjVex修改,因为到某顶点最近的生成树的点已经是k了
                if (lowCost[j] != 0 && matrix[k, j] < lowCost[j])
                {
                    lowCost[j] = matrix[k, j];
                    adjVex[j] = k;
                }
            }
        }
    }
}

以下面这个图为例,求它的最小生成树

Main函数代码:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace 数据结构代码篇
{
    class Program
    {
        static void Main(string[] args)
        {
            PrimMinTree prim = new PrimMinTree();
            Vertex vex0 = new Vertex(0);
            Vertex vex1 = new Vertex(1);
            Vertex vex2 = new Vertex(2);
            Vertex vex3 = new Vertex(3);
            Vertex vex4 = new Vertex(4);
            Vertex vex5 = new Vertex(5);
            Vertex vex6 = new Vertex(6);
            Vertex vex7 = new Vertex(7);
            Vertex vex8 = new Vertex(8);
            Vertex[] vex = { vex0, vex1, vex2, vex3, vex4, vex5, vex6, vex7, vex8 };
            Edge edge0 = new Edge(0, 1, 10);
            Edge edge1 = new Edge(0, 5, 11);
            Edge edge2 = new Edge(1, 2, 18);
            Edge edge3 = new Edge(1, 8, 12);
            Edge edge4 = new Edge(1, 6, 16);
            Edge edge5 = new Edge(5, 6, 17);
            Edge edge6 = new Edge(2, 8, 8);
            Edge edge7 = new Edge(2, 3, 22);
            Edge edge8 = new Edge(8, 3, 21);
            Edge edge9 = new Edge(6, 3, 24);
            Edge edge10 = new Edge(6, 7, 19);
            Edge edge11 = new Edge(3, 7, 16);
            Edge edge12 = new Edge(4, 7, 7);
            Edge edge13 = new Edge(3, 4, 20);
            Edge edge14 = new Edge(4, 5, 26);
            Edge[] edge = { edge0, edge1, edge2, edge3, edge4, edge5, edge6, edge7, edge8, edge9, edge10, edge11, edge12, edge13, edge14 };
            prim.GraphAdjacencyMatrix(vex, edge);
            prim.Prim(0);
            Console.ReadLine();
        }
    }
}

运行结果:

运行结果
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,009评论 5 474
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 84,808评论 2 378
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 148,891评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,283评论 1 272
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,285评论 5 363
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,409评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,809评论 3 393
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,487评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,680评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,499评论 2 318
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,548评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,268评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,815评论 3 304
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,872评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,102评论 1 258
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,683评论 2 348
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,253评论 2 341