offer
public boolean offer(E e) {
if (e == null)
throw new NullPointerException();
final ReentrantLock lock = this.lock;
// 独占锁锁定
lock.lock();
int n, cap;
Object[] array;
// 队列已满,需要扩容
while ((n = size) >= (cap = (array = queue).length))
tryGrow(array, cap);
try {
Comparator<? super E> cmp = comparator;
if (cmp == null)
// 按照自然顺序进行上浮调整
siftUpComparable(n, e, array);
else
// 按照cmp指定的顺序进行上浮调整
siftUpUsingComparator(n, e, array, cmp);
// 队列元素总数+1
size = n + 1;
// notEmpty满足,唤醒
notEmpty.signal();
} finally {
lock.unlock();
}
return true;
}
tryGrow
private void tryGrow(Object[] array, int oldCap) {
// 首先释放独占锁
// 后面的扩容操作是需要成本的,如果一直持有锁,那么势必会降低吞吐量,而这里通过cas的方式来避免将扩容
// 纳入到锁定的过程,最大化吞吐量
lock.unlock(); // must release and then re-acquire main lock
Object[] newArray = null;
// 首先扩容操作是排他的,看allocationSpinLock是否被锁定
if (allocationSpinLock == 0 &&
UNSAFE.compareAndSwapInt(this, allocationSpinLockOffset,
0, 1)) {
// 如果能成功锁定的话
try {
// 计算新的容量
int newCap = oldCap + ((oldCap < 64) ?
(oldCap + 2) : // grow faster if small
(oldCap >> 1));
// 如果计算出来的容量不能超过理论值
if (newCap - MAX_ARRAY_SIZE > 0) { // possible overflow
int minCap = oldCap + 1;
if (minCap < 0 || minCap > MAX_ARRAY_SIZE)
throw new OutOfMemoryError();
newCap = MAX_ARRAY_SIZE;
}
if (newCap > oldCap && queue == array)
newArray = new Object[newCap];
} finally {
// 扩容结束,解锁
allocationSpinLock = 0;
}
}
// 如果newArray为空,说明其他线程在进行扩容的操作或者当前扩容失败,那么出让CPU给其他人试试
if (newArray == null) // back off if another thread is allocating
Thread.yield();
// 独占锁再次锁定,后面会对前面初始化的新的array做拷贝动作。
lock.lock();
if (newArray != null && queue == array) {
queue = newArray;
System.arraycopy(array, 0, newArray, 0, oldCap);
}
}
siftUpComparable
private static <T> void siftUpComparable(int k, T x, Object[] array) {
Comparable<? super T> key = (Comparable<? super T>) x;
// 这里的意义是上浮
// 当插入节点的值要小于它的父节点的话,需要跟父节点进行交换
// 直到上浮到比父节点大为止
while (k > 0) {
// 获取parent的下标
int parent = (k - 1) >>> 1;
Object e = array[parent];
if (key.compareTo((T) e) >= 0)
break;
array[k] = e;
k = parent;
}
array[k] = key;
}
poll
public E poll() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
return dequeue();
} finally {
lock.unlock();
}
}
dequeue
private E dequeue() {
int n = size - 1;
if (n < 0)
return null;
// 如果队列不为空
else {
Object[] array = queue;
// 顶部元素
E result = (E) array[0];
// 最右边元素
E x = (E) array[n];
array[n] = null;
Comparator<? super E> cmp = comparator;
if (cmp == null)
// 将顶部跟最右边元素进行调整,然后再下沉处理
siftDownComparable(0, x, array, n);
else
siftDownUsingComparator(0, x, array, n, cmp);
size = n;
return result;
}
}
siftDownComparable
private static <T> void siftDownComparable(int k, T x, Object[] array,
int n) {
// 如果队列不为空
if (n > 0) {
Comparable<? super T> key = (Comparable<? super T>)x;
// 找到队列中点
int half = n >>> 1; // loop while a non-leaf
// k < half代表是非叶子节点
while (k < half) {
// 拿到k位置的左节点
int child = (k << 1) + 1; // assume left child is least
Object c = array[child];
// 拿到k位置的右节点
int right = child + 1;
if (right < n &&
// 这里的意义就是找到k节点的左右子节点的较小的那个
((Comparable<? super T>) c).compareTo((T) array[right]) > 0)
c = array[child = right];
// 如果key要比左右子节点都笑,那么直接替换掉父节点就好,不然继续往下看左子树
if (key.compareTo((T) c) <= 0)
break;
// 将子节点替换掉父节点
array[k] = c;
// 将k调整到子节点
k = child;
}
// 将x元素调整到k位置
array[k] = key;
}
}
take
public E take() throws InterruptedException {
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
E result;
try {
// 如果队列为空,那么notEmpty不满足,进而需要等待offer唤醒
while ( (result = dequeue()) == null)
notEmpty.await();
} finally {
lock.unlock();
}
return result;
}