数据分析基础内容介绍 — 模型、工具、统计、挖掘与展现

数据分析基础内容介绍 — 模型、工具、统计、挖掘与展现

来自 http://www.199it.com/archives/417399.html

1. 数据分析多层模型介绍

这个金字塔图像是数据分析的多层模型,从下往上一共有六层:

底下第一层称为Data Sources 元数据层。

比如说在生产线上,在生产的数据库里面,各种各样的数据,可能是银行的业务数据,也可能是电信运营商在交换机里面采集下来的数据等等,然后这些生产的数据通过ETL,是英文 Extract-Transform-Load 的缩写,用来描述将数据从来源端经过抽取(extract)、转换(transform)、加载(load)至目的端的过程,通过这个过程,我们可以把需要的数据放到数据仓库里面,那这个数据仓库就是多层模型中的第二层。

数据仓库主要是给我们需要存放的数据提供一个物理基础,我们对数据进行分析,原材料都放在这个数据仓库里面,这几年以来,除了数据仓库这个概念,还兴起了数据集市这个概念,数据集市其实就是部门级的数据仓库,规模比较小一点的数据仓库。

再上面一层是Data Exploration,这层主要做统计分析的事情,比如我们算均值、标准差、方差、排序、求最小\大值、中位数、众数等等,这些统计学比较常用的指标,另外还有些SQL查询语句,总的来说主要是做一些目标比较明确,计算方法比较清楚的事情。

第四层是Data Mining数据挖掘层,数据挖掘与数据分析(统计分析)有什么区别呢,数据分析往往是统计量和算法比较清楚,数据挖掘往往是目标不是很清楚,在实现目标的过程中采用什么方法不能确定,所以数据挖掘比数据分析难度要高很多。

第五层是数据展现层,把数据分析和数据挖掘得出来的结果通过数据展现层的图表、报表把他展现出来,也可以称为数据可视化。

最后把这些图表、报表交给决策者,以这个为基础做一些决策。

2. 数据分析工具简介

常用的数据分析工具,包括一些厂商的数据库产品,包括IBM的DB2、甲骨文的Oracle数据库。这些厂商的数据库本身带有一些统计分析的包,里面有些标准的功能可以做数据分析工作,但用这些自带的数据分析工具功能相对不够专业。主要反映在缺乏标准的统计函数,比如做一个线性回归模型,需要写一大堆SQL语句,甚至要写一个plsql程序才能完成。但是在专业的统计软件只需要写一个简单的函数就可以完成。

目前最主流的统计软件有R、SAS、SPSS,R是一个免费的开源软件。

SAS大概是历史最悠久的统计软件,是一个商业软件,在60年代就诞生,在70年代以后逐渐商业化,发展到现在SAS已经成为国际标准。

SPSS也是一个历史悠久的统计软件,SPSS一开始是一个仿真软件,后来演变成一个统计软件,目前已经发展成为一个数据挖掘软件,目前被IBM收购,变成IBM旗下的一个产品,在社会学研究院领域有很多的应用。

其他的还有一些软件,比如说水晶报表(Crystal Reports),在做BI和报表非常擅长,另外如UCINET也是在社会学比较常用的软件,它可以画群体的网络图,社交关系图非常擅长。

3. 常用统计方法

使用统计方法,有目的地对收集到的数据进行分析处理,并且解读分析结果:

常用算法

4. 数据挖掘

数据挖掘是以查找隐藏在数据中的信息为目标的技术,是应用算法从大型数据库中提取知识的过程,这些算法确定信息项之间的隐性关联,并且向用户显示这些关联。

数据挖掘思想来源:假设检验,模式识别,人工智能,机器学习

常见数据挖掘任务:关联分析,聚类分析,孤立点分析等等

例:啤酒与尿布的故事

5. 展现层:报表与图形

展现层在数据分析中是一个很重要的组成部分,在大家的心目中数据分析软件只是读数据和算数据,结果算出来就OK了。但其实结果算出来以后对于数据分析还远没有结束,还需要把结果展现出来,有些时候可能结果的展现比计算花的时间还要多。

下图是一个比较老土的报表。

如果那这种报表给老板看,那体验效果肯定很差,其实人的特点对数字的感觉不敏感,如果你那一大堆数字组成的报表给老板看,老板肯定不是很高兴。

人对图形会比较敏感,所以在统计学里面通常有比较标准的图,如饼图、柱形图(垂直和水平)、虚线图、水泡图、鱼骨图、箱线图等等。

下面是一张在地图上展现数据的展现形式

下图是关于使用安卓手机的数据展现

根据信息图显示,Android先生的头发有47%的可能是黑色的,戴眼镜的几率为37%,有36%的可能是北美人,30%的可能脸上长雀斑。71%的时 间会穿T恤,下身穿牛仔裤的时间占了62%。工作只占了38%,玩游戏却占了62%,平均每个月会用掉582MB的数据流量。这种图称为信息图,在数据分析这个行业里面,是数据展现工作的主要组成部分。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,324评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,303评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,192评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,555评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,569评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,566评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,927评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,583评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,827评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,590评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,669评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,365评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,941评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,928评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,159评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,880评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,399评论 2 342

推荐阅读更多精彩内容