from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.feature_extraction.text import TfidfVectorizer

在文本分类之中,首先分词,然后将分词之后的文本进行tfidf计算,并向量化(这一部分是核心),最后利用传统机器学习算法进行分类就可以了。
因此我要在这里重点学习一下。

入参

input : string {‘filename’, ‘file’, ‘content’}

如果是‘filename’,传递给fit的参数序列应该是需要读取以获取要分析的原始内容的文件名列表。
如果“file”,序列项必须有一个“read”方法(类似文件的对象),该方法被调用来获取内存中的字节。
否则,输入预期是序列字符串或字节项预期将被直接分析。

encoding : string, ‘utf-8’ by default.

如果要解析字节或文件,则使用这个encoding进行解码。

decode_error : {‘strict’, ‘ignore’, ‘replace’}

如果给定一个字节序列来解析包含不属于给定编码的字符,该如何操作的指令。默认情况下,它是“strict”,这意味着将引发一个UnicodeDecodeError。其他值是“忽略”(ignore)和“替换”(replace)。

strip_accents : {‘ascii’, ‘unicode’, None}

在预处理步骤中删除音标并执行其他字符标准化。“ascii”是一种只对具有直接ascii映射的字符有效的快速方法。unicode是一种稍微慢一点的方法,适用于任何字符。None(默认)什么也不做。
ascii和unicode都使用来自unicodedata.normalize的NFKD标准化。

lowercase : boolean, default True

在进行tokenizing(令牌化)之前,将所有字符转换为小写。

preprocessor : callable or None (default)

重写预处理(字符串转换)阶段,同时保留tokenizing(令牌化)和n-gram生成步骤。

tokenizer : callable or None (default)

重写字符串切词的步骤,同时保留预处理和n-gram生成步骤。仅当analyzer == 'word'时才可用。

analyzer : string, {‘word’, ‘char’} or callable

特征是由单词还是n-gram的字符组成。
如果传递了一个可调用的函数,它将用于从未经处理的原始输入中提取一系列特征(feature)。

stop_words : string {‘english’}, list, or None (default)

如果是字符串,则将其传递给_check_stop_list,并返回相应的停止列表。' english '是当前唯一受支持的字符串值。“english”有几个已知的问题,你应该考虑一个替代(see Using stop words)。言下之意就是过滤全部的英文单词。
如果是list型,假设list中包含停止词(stop words),所有停词将从分词结果(resulting tokens)中删除。仅当analyzer == 'word'时才适用。
如果是None,则不使用停止字。max_df可以设置为[0.7,1.0)范围内的一个值,根据语料库内文档中词汇的频率自动检测和过滤停止词。

token_pattern : string

构成一个“令牌”(token)的正则表达式,仅在analyzer == 'word'时可以使用。默认正则表达式选择由2个或更多字母数字字符的组成的标记(token)(标点符号完全被忽略,始终被当作令牌(token)分隔符)。

ngram_range : tuple (min_n, max_n)

属性

vocabulary_ : dict

字典型,词语(terms)到特征索引(feature indices)之间的映射(mapping)。

idf_ : array, shape (n_features)

逆文档频率(IDF)向量;只有当use_idf为True时才被定义。

stop_words_ : set

因为如下原因被忽略的词语:
出现在太多文档中(max_df)
出现的文档太少(min_df)
被特征选择(max_features)截断。
只有在没有给出词汇表的情况下才可以使用。

方法

----------------------------------我是分割线啊---------------------------------------
突然懒得更新了,给一个今天才发现的网址吧
https://blog.csdn.net/feng_zhiyu/article/details/81952697

https://blog.csdn.net/binglingzy666/article/details/79241486

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342

推荐阅读更多精彩内容