数据挖掘(机器学习)面试问题记录

下面记录一些面试常问题目

1、logistic,损失函数

逻辑回归算法是分类算法,我们将它作为分类算法使用。有时候可能因为这个算法的名字中出现了“回归”使你感到困惑,但逻辑回归算法实际上是一种分类算法。
参考:https://www.jianshu.com/p/fa2ed565e16e

2、sigmoid

image.png

参考:https://www.jianshu.com/p/fa2ed565e16e

3、朴素贝叶斯

朴素贝叶斯是一种基于贝叶斯定理的简单概率分类器。
朴素贝叶斯的主要优点有:

1)朴素贝叶斯模型发源于古典数学理论,有稳定的分类效率。

2)对小规模的数据表现很好,能个处理多分类任务,适合增量式训练,尤其是数据量超出内存时,我们可以一批批的去增量训练。

3)对缺失数据不太敏感,算法也比较简单,常用于文本分类。

朴素贝叶斯的主要缺点有:

1)理论上,朴素贝叶斯模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为朴素贝叶斯模型给定输出类别的情况下,假设属性之间相互独立,这个假设在实际应用中往往是不成立的,在属性个数比较多或者属性之间相关性较大时,分类效果不好。而在属性相关性较小时,朴素贝叶斯性能最为良好。对于这一点,有半朴素贝叶斯之类的算法通过考虑部分关联性适度改进。

2)需要知道先验概率,且先验概率很多时候取决于假设,假设的模型可以有很多种,因此在某些时候会由于假设的先验模型的原因导致预测效果不佳。

3)由于我们是通过先验和数据来决定后验的概率从而决定分类,所以分类决策存在一定的错误率。

4)对输入数据的表达形式很敏感。
参考:https://www.jianshu.com/p/b6e4f80e86ca

4、attention及其优点

核心逻辑就是「从关注全部到关注重点」。

Attention 解决了 RNN 不能并行计算的问题。Attention机制每一步计算不依赖于上一步的计算结果,因此可以和CNN一样并行处理。模型复杂度和CNN、RNN对比,复杂度更小,参数也更少。所以对算力的要求也就更小。
优点:1、速度快 2、并行计算 3、参数少

5、说说GBAT与XGboost,说说区别

GBDT采用了多模型集成的策略,针对残差进行拟合,进而降低模型的偏差和方差。GBDT的思想可以用一个通俗的例子解释,假如有个人30岁,我们首先用20岁去拟合,发现损失有10岁,这时我们用6岁去拟合剩下的损失,发现差距还有4岁,第三轮我们用3岁拟合剩下的差距,差距就只有一岁了。如果我们的迭代轮数还没有完,可以继续迭代下面,每一轮迭代,拟合的岁数误差都会减小。

GBDT的思想可以用一个通俗的例子解释,假如有个人30岁,我们首先用20岁去拟合,发现损失有10岁,这时我们用6岁去拟合剩下的损失,发现差距还有4岁,第三轮我们用3岁拟合剩下的差距,差距就只有一岁了。如果我们的迭代轮数还没有完,可以继续迭代下面,每一轮迭代,拟合的岁数误差都会减小。

XGboost的基本思想和GBDT是一样的,都是按照损失函数的负梯度方向提升,其实就是gbdt,只是进行了泰勒二次展开,加了一些正则项。


原文链接:https://blog.csdn.net/ZYXpaidaxing/article/details/79963319
参考:(15条消息) GBDT与XGboost小结_星青星晴的博客-CSDN博客
机器学习算法中 GBDT 和 XGBOOST 的区别有哪些? - 知乎 (zhihu.com)

6、样本不均衡怎么办

数据层面:采样,数据增强,数据合成等;
算法层面:修改损失函数值,难例挖掘等。

7、过拟合处理方法

方法主要包括:(1)减少特征维度;(2)正则化,降低参数值。

具体方法有:

(1)获取更多数据 :从数据源头获取更多数据;数据增强(Data Augmentation)

(2)使用合适的模型:减少网络的层数、神经元个数等均可以限制网络的拟合能力;

(3)dropout ;

(4)正则化,在训练的时候限制权值变大;

(5)限制训练时间;通过评估测试;

(6)增加噪声 Noise: 输入时+权重上(高斯初始化) ;

(7)数据清洗(data ckeaning/Pruning):将错误的label 纠正或者删除错误的数据。

(8)结合多种模型: Bagging用不同的模型拟合不同部分的训练集;Boosting只使用简单的神经网络;
参考:https://zhuanlan.zhihu.com/p/91178024

8、排序算法

至少要会一种
python冒泡算法

https://www.runoob.com/w3cnote/ten-sorting-algorithm.html

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,324评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,303评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,192评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,555评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,569评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,566评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,927评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,583评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,827评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,590评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,669评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,365评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,941评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,928评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,159评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,880评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,399评论 2 342

推荐阅读更多精彩内容