竞争风险模型competing risk model

生存时间相关研究样本的几种结局

  1. censoring
  2. uncensoring: (1.interesting event; 2. competing event)
    比如肿瘤相关死亡是你关心的,则为interesting event
    非肿瘤相关死亡则为competing event

什么是competing risk

in some situations more than one type of event can happen.
The occurrence of one type of event can hinder the observation or change the probability of other types of events being observed.

  • the event whose occurrence either precludes the occurrence of another event under investigation or fundamentally alters the probability of occurrence of this other event.

为什么要使用competing risk model

  • 如果我要研究乳腺癌相关死亡,那么非乳腺癌相关死亡就是competing risk
  • 我们使用KM法分析乳腺癌相关死亡,是将非乳腺癌相关死亡认为是censor,这个就不合适!!
  • 生存分析常用的方法是KM,logrank,cox,但是KM没有考虑competing risk,所以需要改进!!

  • KM method can be considered an extension for calculating the probability of event in the presence of censoring.
  • CIF estimation is an extension of the KM method for calculating the probability of event in the presence of competing risks.
    两种假设
  • If competing risks are not present, the CIF is identical to 1-KM.
  • If competing risks exist but there is no censoring, the CIF is identical to the ratio of the number of events of interest to the number of subjects.

competing risk model一些统计学知识

  • density
  • distribution, the survivor funtion
  • the hazard function


    image.png
  • there are only two types of events and ev = 1 and ev = 2 refer to events of types 1 and 2, respectively
  • F(t) is an increasing function ranging between 0 and 1.
  • each of the probabilities for a specific event can reach only a value p < 1. Thus the probability of one event in the presence of another event ranges between 0 and a value p <1
  • It follows that F1 and F2 cannot be regarded as true, proper distributions. They are called subdistributions.

对于每个subdistributions,F1和F2, 都有一个subdensity ( f1 and f2)
根据F1和f1,可以计算subhazardsubdistribution hazard

image.png

对于subhazard,有两种情况

  • the two events are independent

that the subhazard is the same as the hazard of the marginal distribution

  • the two events are not independent

the subhazard is no longer the hazard of the marginal mode
对于subdistribution hazard
the analysis of the subdistribution hazard does not assume independence, and it can be interpreted as reflecting the observable effect

用什么统计学方法

The cumulative incidence function and the Fine and Gray model will be introduced as the main methods to analyze competing risks data.

CIF和KM有什么不同

相较于The cumulative incidence functionKM会高估累计发生率

image.png

  • CIF对应曲线为Nelson-Aalen累计风险曲线,差异性检验对应Gray‘s检验
  • CIF包括两个模型:1. cause-specific hazard function; 2. subdistribution hazard function

the Fine and Gray model和the partial likelihood of Cox regression 的不同

  • weight

The involvement of the competing risks event is mitigated by the weight: the longer the duration between the current event and the observed competing risks event, the smaller the weight

  • risk set
  • the set of observations with longer observed time that the current event (in COX);
  • also includes all the competing risks events at all time points regardless of the time at which the competing risk was observed (in fine and gray model)
    image.png

为什么不用COX

  • 只有在interesting event和competing risk event相互独立的情况下,用COX分析生存数据才能解释
  • 但多数情况下interesting event和competing risk event并不相互独立 (这也是为什么要用fine-gray model的原因)

competing risk event对样本量的影响

marginal hazards of competing risk event 上升
probability of the event of interest to occur during the study period 下降
总的样本量 上升

  • since the competing risks hinder the observation of the event of interest
  • The higher the rate of competing risks, the less likely is to observe the event of interest, and therefore a larger initial sample sizes is needed.

怎么做

cmprsk包中的crr函数和cuminc函数

  • cuminc--可以计算CIF
    可以得到cumulative incidence plot以及每个事件内部的比较pvalue(如果有分组的话)

  • crr--计算Competing Risks Regression
    为了得到HR,95%CI,pvalue

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,406评论 5 475
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 84,976评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,302评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,366评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,372评论 5 363
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,457评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,872评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,521评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,717评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,523评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,590评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,299评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,859评论 3 306
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,883评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,127评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,760评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,290评论 2 342

推荐阅读更多精彩内容