机器学习(周志华版)个人笔记--第三章

线性模型

1.基本形式

给定由d个属性描述的示例x=(x1;x2;x3....xd),其中xi是x的第i个属性上的取值,线性模型试图学得一个通过属性的线性组合来进行预测函数,即f(x) = w1x1+w2x2+...wdxd+b,

向量形式写成

例:西瓜问题中学的“f好瓜(x)=0.2*x色泽+0.5*x根蒂+0.3*x敲声+1”,则意味着可通过综合考虑色泽、根蒂和敲声来判断瓜好不好,其中根蒂最要紧,而敲声比色泽更重要。

2.线性回归

线性回归

我们先考虑一种最简单的情形:输入属性的数目只有一个。对离散属性,若属性值间存在“序”关系,可通过连续化将其转化为连续值,例如二值属性“身高”的取值“高”“矮”可转化为{1.0,0.0},三值属性“高度”的取值“高”“中”“低”可转化为{1.0,0.5,0.0};若属性值间不存在序关系,假定有个k个属性值,则通常转化为k维向量,例如属性“瓜类”的取值“西瓜”“南瓜”“黄瓜”可转化为(0,0,1),(0,1,0),(1,0,0).

线性回归仕途学得

如何确定w和b呢?显然在于如何衡量f(x)与y之间的差别。均方误差回归任务中最常用的性能度量,

试图让均方误差最小化,即

均方误差对应了常用的欧几里得距离或简称“欧氏距离”。基于均方误差最小化来进行模型求救的方法称为“最小二乘法”。在线性回归中,最小二乘法就是试图找到一条直线,使所有样本到直线上的欧氏距离之和最小。

多元线性回归
最终学得的多元线性回归模型
对数线性回归、广义线性回归

3.对数几率回归

上一节讨论如何使用线性模型进行回归学习,但若要做的是分类任务该怎么办

答案蕴含在广义性模型中:只需找一个单调可微函数将分类任务的真是标记y与线性回归模型的预测联系起来。

用线性回归模型的预测结果区逼近真实标记的对数几率,因此,其对应的模型称为“对数几率回归”。它的名字是“回归”,但实际却是一种分类学习方法。这种方法的优点,例如它是直接对分类可能性进行建模,无需事先假设数据分布,这样就避免了假设分布不准确所带来的问题;它不是仅预测“类别”,而是可得到近似概率预测,这对许多需利用概率辅助决策的任务很有用;此外,对率函数是任何阶可导的凸函数,有很好的数学性质,现有的许多数值优化算法都可直接用于求取最优解。

线性判别分析

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 201,924评论 5 474
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 84,781评论 2 378
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 148,813评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,264评论 1 272
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,273评论 5 363
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,383评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,800评论 3 393
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,482评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,673评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,497评论 2 318
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,545评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,240评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,802评论 3 304
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,866评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,101评论 1 258
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,673评论 2 348
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,245评论 2 341

推荐阅读更多精彩内容