使用Seurat进行单细胞VDJ免疫分析
NGS系列文章包括NGS基础、转录组分析 (Nature重磅综述|关于RNA-seq你想知道的全在这)、ChIP-seq分析 (ChIP-seq基本分析流程)、单细胞测序分析 (重磅综述:三万字长文读懂单细胞RNA测序分析的最佳实践教程 (原理、代码和评述))、DNA甲基化分析、重测序分析、GEO数据挖掘(典型医学设计实验GEO数据分析 (step-by-step) - Limma差异分析、火山图、功能富集)等内容。
小剧场:
我:老板,你听说没有楼上做的单细胞实验加了VDJ分析?
老板:VCD分析?哦,,我早就听过了!
我:老板,是VDJ分析?
老板:VDJ分析,哦对对就是VDJ分析,,,我早就说咱们也应该做了,你看看,又迟了一步,都怪你不提醒我!我瞟了一眼她桌子上的淘宝页面(廉价灯芯裤),默默走开了。。。
其实我在介绍clonotypr
(令我惊奇的是,当我把推送推出去的当天,我亲爱的作者就把该包从github
撤了下来啊!)时说明过VDJ免疫分析对免疫及抗体产生的重要意义,这也是为什么现在许多做新冠单细胞分析的都会使用5’端测序联用VDJ测序分析。
1. 为什么要进行单细胞免疫组库的分析?
应用方向一:探索肿瘤免疫微环境,辅助免疫治疗。
每个人都拥有一个自己的适应性免疫组库,TCR和BCR通过基因重组和体细胞突变取得多样性,使得我们身体可以识别和抵御各种内部和外部的入侵者。而肿瘤的发生往往躲避了人体T淋巴细胞而产生、增殖和转移。
使用10X Genomics ChromiumTM Single Cell Immune Profiling Solution可以捕捉肿瘤发生时的免疫微环境变化,寻找免疫治疗的靶点,从而辅助免疫治疗更好地抗击肿瘤。
应用方向二:探索自身免疫性疾病和炎症性疾病发生机制,辅助疫苗的研究
自身免疫性疾病发生起始和发展的中心环节被认为是抗原特异性T细胞激活导致的,使用10X Genomics ChromiumTM Single Cell Immune Profiling Solution,可以解析自身免疫性疾病的发病机制,从而为疾病的诊疗提供依据。
应用方向三:移植和免疫重建
器官或者骨髓移植时,经常会诱发宿主的排斥反应,从而发生慢性移植抗宿主病。同种异体反应随机分布在整个T细胞组库的交叉反应,因此延迟T细胞恢复和限制的T细胞受体多样性与异体移植后感染和疾病复发风险增加相关。
而我比较注意的是在疫苗接种前后BCR/TCR CDR3免疫组库的分析,最近medRxiv上发表的有关新冠的文献Immune Cell Profiling of COVID-19 Patients in the recovery stage by Single-cell sequencing中对不同BCR/TCR的VDJ重排进行分析,揭示了针对新冠特异的克隆扩增。
2. 免疫组库主要包括哪几个方面?
T淋巴细胞(T cell
)和B淋巴细胞(B cell
)主要负责适应性免疫应答,其抗原识别主要依赖于T细胞受体(T cell recptor, TCR
)和B细胞受体(B cell recptor, BCR
),这两类细胞表面分子的共同特点是其多样性,可以识别多种多样的抗原分子。BCR
的轻链和TCRβ
链由V、D、J、C四个基因片段组成,BCR
的重链和TCRα
链由V、J、C三个基因片段组成,这些基因片段在遗传过程中发生重组、重排,组合成不同的形式,保证了受体多样性。其中变化最大的就是CDR3
区。
3. 10× Genomics VDJ测序进行cellranger后的输出形式是什么样的?
Outputs:
- Run summary HTML: /home/jdoe/runs/sample345/outs/web_summary.html
- Run summary CSV: /home/jdoe/runs/sample345/outs/metrics_summary.csv
- All-contig FASTA: /home/jdoe/runs/sample345/outs/all_contig.fasta
- All-contig FASTA index: /home/jdoe/runs/sample345/outs/all_contig.fasta.fai
- All-contig FASTQ: /home/jdoe/runs/sample345/outs/all_contig.fastq
- Read-contig alignments: /home/jdoe/runs/sample345/outs/all_contig.bam
- Read-contig alignment index: /home/jdoe/runs/sample345/outs/all_contig.bam.bai
- All contig annotations (JSON): /home/jdoe/runs/sample345/outs/all_contig_annotations.json
- All contig annotations (BED): /home/jdoe/runs/sample345/outs/all_contig_annotations.bed
- All contig annotations (CSV): /home/jdoe/runs/sample345/outs/all_contig_annotations.csv
- Filtered contig sequences FASTA: /home/jdoe/runs/sample345/outs/filtered_contig.fasta
- Filtered contig sequences FASTQ: /home/jdoe/runs/sample345/outs/filtered_contig.fastq
- Filtered contigs (CSV): /home/jdoe/runs/sample345/outs/filtered_contig_annotations.csv
- Clonotype consensus FASTA: /home/jdoe/runs/sample345/outs/consensus.fasta
- Clonotype consensus FASTA index: /home/jdoe/runs/sample345/outs/consensus.fasta.fai
- Clonotype consensus FASTQ: /home/jdoe/runs/sample345/outs/consensus.fastq
- Concatenated reference sequences: /home/jdoe/runs/sample345/outs/concat_ref.fasta
- Concatenated reference index: /home/jdoe/runs/sample345/outs/concat_ref.fasta.fai
- Contig-consensus alignments: /home/jdoe/runs/sample345/outs/consensus.bam
- Contig-consensus alignment index: /home/jdoe/runs/sample345/outs/consensus.bam.bai
- Contig-reference alignments: /home/jdoe/runs/sample345/outs/concat_ref.bam
- Contig-reference alignment index: /home/jdoe/runs/sample345/outs/concat_ref.bam.bai
- Clonotype consensus annotations (JSON): /home/jdoe/runs/sample345/outs/consensus_annotations.json
- Clonotype consensus annotations (CSV): /home/jdoe/runs/sample345/outs/consensus_annotations.csv
- Clonotype info: /home/jdoe/runs/sample345/outs/clonotypes.csv
- Barcodes that are declared to be targeted cells: /home/jdoe/runs/sample345/out/cell_barcodes.json- Loupe V(D)J Browser file: /home/jdoe/runs/sample345/outs/vloupe.vloupe
首先我们来看看web.html
对整个测序质量的评估:
我们看到在Enrichment
中reads映射到VDJ基因的比例为80.7%,其中TRA/TRB
代表TCR α/β
链 ,map到TRA的比例为24.4%,map到TRB的比例为56%。当然,后面也会有蛮多指标的,比如VDJ注释,VDJ质量及表达等。。。
当然我们也会有很多表格,其中最重要的表格为contig_annotation和clonotype:
contig_annotation(BCR示例)
上面表格中的IGH和IGK/IGL
代表BCR H和BCR L
链 。看到这个表格,我第一反应其实是为什么D区基因(d_gene
)多数均为None
,主要原因还是D区通常较短又突变较多,因技术限制而常常捕捉不到。数据中也提供了CDR3
的蛋白序列和核苷酸序列。
clonotype(TCR示例)
从以上数据可以看出,有部分克隆是由单链决定的。
那么如何将VDJ的克隆表型和scRNA-seq结合起来呢?其实大佬已经回答了这个问题:
add_clonotype <- function(tcr_location, seurat_obj){
tcr <- read.csv(paste(tcr_folder,"filtered_contig_annotations.csv", sep=""))
# Remove the -1 at the end of each barcode.
# Subsets so only the first line of each barcode is kept,
# as each entry for given barcode will have same clonotype.
tcr$barcode <- gsub("-1", "", tcr$barcode)
tcr <- tcr[!duplicated(tcr$barcode), ]
# Only keep the barcode and clonotype columns.
# We'll get additional clonotype info from the clonotype table.
tcr <- tcr[,c("barcode", "raw_clonotype_id")]
names(tcr)[names(tcr) == "raw_clonotype_id"] <- "clonotype_id"
# Clonotype-centric info.
clono <- read.csv(paste(tcr_folder,"clonotypes.csv", sep=""))
# Slap the AA sequences onto our original table by clonotype_id.
tcr <- merge(tcr, clono[, c("clonotype_id", "cdr3s_aa")])
# Reorder so barcodes are first column and set them as rownames.
tcr <- tcr[, c(2,1,3)]
rownames(tcr) <- tcr[,1]
tcr[,1] <- NULL
# Add to the Seurat object's metadata.
clono_seurat <- AddMetaData(object=seurat_obj, metadata=tcr)
return(clono_seurat) }
怎么用呢?举个栗子吧:
数据下载
download.file("https://bioshare.bioinformatics.ucdavis.edu/bioshare/download/iimg5mz77whzzqc/vdj_v1_mm_balbc_pbmc.zip", "vdj_v1_mm_balbc_pbmc.zip")#这是小鼠的PBMC数据
加载R包
library(Seurat)library(cowplot)
加载数据
## Cellranger
balbc_pbmc <- Read10X_h5("vdj_v1_mm_balbc_pbmc/vdj_v1_mm_balbc_pbmc_5gex_filtered_feature_bc_matrix.h5")
s_balbc_pbmc <- CreateSeuratObject(counts = balbc_pbmc, min.cells = 3, min.features = 200, project = "cellranger")
提取线粒体基因
s_balbc_pbmc$percent.mito <- PercentageFeatureSet(s_balbc_pbmc, pattern = "^mt-")
增加T和B细胞的克隆信息
add_clonotype <- function(tcr_prefix, seurat_obj, type="t"){
tcr <- read.csv(paste(tcr_prefix,"filtered_contig_annotations.csv", sep=""))
# Remove the -1 at the end of each barcode.(注意,此步骤如果标记使用不同的barcode,比如多了个-1,可以使用 tcr$barcode <- gsub("-1", "", tcr$barcode)进行提取)
# Subsets so only the first line of each barcode is kept,
# as each entry for given barcode will have same clonotype.
tcr <- tcr[!duplicated(tcr$barcode), ]
# Only keep the barcode and clonotype columns.
# We'll get additional clonotype info from the clonotype table.
tcr <- tcr[,c("barcode", "raw_clonotype_id")]
names(tcr)[names(tcr) == "raw_clonotype_id"] <- "clonotype_id"
# Clonotype-centric info.
clono <- read.csv(paste(tcr_prefix,"clonotypes.csv", sep=""))
# Slap the AA sequences onto our original table by clonotype_id.
tcr <- merge(tcr, clono[, c("clonotype_id", "cdr3s_aa")])
names(tcr)[names(tcr) == "cdr3s_aa"] <- "cdr3s_aa"
# Reorder so barcodes are first column and set them as rownames.
tcr <- tcr[, c(2,1,3)]
rownames(tcr) <- tcr[,1]
tcr[,1] <- NULL
colnames(tcr) <- paste(type, colnames(tcr), sep="_")
# Add to the Seurat object's metadata.
clono_seurat <- AddMetaData(object=seurat_obj, metadata=tcr)
return(clono_seurat)
}
s_balbc_pbmc <- add_clonotype("vdj_v1_mm_balbc_pbmc/vdj_v1_mm_balbc_pbmc_t_", s_balbc_pbmc, "t")
s_balbc_pbmc <- add_clonotype("vdj_v1_mm_balbc_pbmc/vdj_v1_mm_balbc_pbmc_b_", s_balbc_pbmc, "b")head(s_balbc_pbmc[[]])
我给解释一下以上function中
每一步都在干什么:
contig_annotations.csv
,并赋给tcr
;tcr
中重复的barcode
,即如果具有相同的barcode
,将以第一次出现的barcode
为主来去重;tcr
中的barcode
,raw_clonotype_id
赋值于tcr
;clonotypes.csv
,并赋给clono
;tcr
和colono
进行merge
(单细胞分析Seurat使用相关的10个问题答疑精选!),并赋给tcr
;barcode
,raw_clonotype_id
和colono
的tcr
对象以metadata
的形式加入seurat object
中。发现很多的NA
,非常正常啊,不是每个细胞都是T/B cell
,然后还列出来了T/B CDR3
的蛋白序列。
table(!is.na(s_balbc_pbmc$t_clonotype_id),!is.na(s_balbc_pbmc$b_clonotype_id))
s_balbc_pbmc <- subset(s_balbc_pbmc, cells = colnames(s_balbc_pbmc)[!(!is.na(s_balbc_pbmc$t_clonotype_id) & !is.na(s_balbc_pbmc$b_clonotype_id))])
#删除同时表达T、B克隆表型的细胞s_balbc_pbmc
进行常规workflow
s_balbc_pbmc <- subset(s_balbc_pbmc, percent.mito <= 10)
s_balbc_pbmc <- subset(s_balbc_pbmc, nCount_RNA >= 500 & nCount_RNA <= 40000)
s_balbc_pbmc <- NormalizeData(s_balbc_pbmc, normalization.method = "LogNormalize", scale.factor = 10000)
s_balbc_pbmc <- FindVariableFeatures(s_balbc_pbmc, selection.method = "vst", nfeatures = 2000)
all.genes <- rownames(s_balbc_pbmc)
s_balbc_pbmc <- ScaleData(s_balbc_pbmc, features = all.genes)s_balbc_pbmc <- RunPCA(s_balbc_pbmc, features = VariableFeatures(object = s_balbc_pbmc))
use.pcs = 1:30
s_balbc_pbmc <- FindNeighbors(s_balbc_pbmc, dims = use.pcs)
s_balbc_pbmc <- FindClusters(s_balbc_pbmc, resolution = c(0.5))
s_balbc_pbmc <- RunUMAP(s_balbc_pbmc, dims = use.pcs)DimPlot(s_balbc_pbmc, reduction = "umap", label = TRUE)
让我们看看T细胞的marker
的表达情况:
t_cell_markers <- c("Cd3d","Cd3e")FeaturePlot(s_balbc_pbmc, features = t_cell_markers)
比如我知道某个b_cdr3s_aa
我感觉特有意思,想在UMAP
图上进行表示,于是我先把他的蛋白序列找了出来,IGH:CARWGGYGYDGGYFDYW;IGK:CGQSYSYPYTF,然后:
DimPlot(s_balbc_pbmc, cells.highlight = Cells(subset(s_balbc_pbmc, subset = b_cdr3s_aa+ == "IGH:CARWGGYGYDGGYFDYW;IGK:CGQSYSYPYTF")))
万“绿”丛中一点红!
当然你也可以在metadata
中纳入更多的TCR/BCR
中的有关信息,比如我们把annotation.csv中的chains
也纳入进来的话,就是这个样子滴:
p2 <-DimPlot(s_balbc_pbmc,group.by = "t_chain")p2
参考来源
https://github.com/ucdavis-bioinformatics-training/2020-Advanced_Single_Cell_RNA_Seq/blob/master/data_analysis/VDJ_Analysis_fixed.md