RAG 学习笔记(二)

基于博文 Advanced RAG Techniques: an Illustrated Overview 的学习和练习的记录。

中文内容可以查看博主@宝玉的译文 高级 RAG 技术:图解概览 [译]

系列笔记:
RAG 学习笔记(一)

高级 RAG

高级 RAG 架构如下图所示

高级 RAG 架构

图中,绿色元素为 RAG 核心技术点,蓝色元素为文本。(本架构图对一些细节进行省略,不宜按照本图进行实施)

RAG 核心技术点

  1. 分块和矢量化
  2. 搜索索引构建
  3. 重排序和过滤
  4. 查询转换
  5. 聊天引擎
  6. 查询路由
  7. RAG 中的 Agent
  8. 响应合成

下面将详细说明个技术点

分块和向量化

分块

文档分块的原因:

Transformer 模型输入的长度是固定的,能够表达的语义信息也是固定的,粒度小的文本内容(一句话或者几句话),生成的向量更能够表达文本的含义。

分块的大小是需要考量的参数。

  1. 影响因素:模型的选择,及模型 token 的容量。比如 Bert-based Sentence Transforms 模型最可以有 512 个token,而 OpenAI ada-002 可以接受 8191 个token。
  2. 需要在“获取到足够的上下文信息以供 LLM 生成回答”和“确保文本嵌入足够具体,以便有效地执行检索”之间找到平衡

扩展内容:

  1. 选择块大小时的各种考虑因素 Chunking Strategies for LLM Applications
  2. LlamaIndex 中对于文本分块的实现 NodeParser class

向量化

将文本块转化成向量的过程就是 Embedding。

可以从榜单 MTEB leaderboard 找到最新、效果最好的 Embedding 模型。

作者推荐查询优化过(search optimized)的模型,比如 bge-largeE5 embedding 系列模型。

实例

LlamaIndex 分块和向量化过程的样例:Ingestion Pipeline

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342

推荐阅读更多精彩内容