德国数学家(G.F.)B.黎曼在19世纪中期所提出的几何学理论。1854年,他在格丁根大学发表的就职演说,题目是《论作为几何学基础的假设》,可以说是黎曼几何学的发凡。
从数学上讲,他发展了空间的概念,首先认识到几何学中所研究的对象是一种"多重广延量",其中的点可以用n个实数作为坐标来描述,即现代的微分流形的原始形式,为用抽象空间描述自然现象打下了基础。更进一步,他认为,通常所说的几何学只是在当时已知测量范围之内的几何学,如果超出了这个范围,或者是到更细层次的范围里面,空间是否还是欧几里得的则是一个需要验证的问题,需要靠物理学发展的结果来决定。他认为这种空间(也就是流形)上的几何学应该是基于无限邻近点之间的距离。在无限小的意义下,这种距离仍然满足勾股定理。这样,他就提出了黎曼度量的概念。这个思想发源于C.F.高斯。但是黎曼提出了更一般化的观点。在欧几里得几何中,邻近点的距离平方是这确定了欧几里得几何。但是在一般曲线坐标下,则应,这是相当特殊的一组函数。如果是一般的函数,仍构成正定对称阵,那么出发,也可以定义一种几何学,这便是黎曼几何学。由于在每一点的周围,都可以选取坐标使得在这点成立,所以在非常小的区域里面勾股定理近似成立。但在大一点的范围里一般就和欧几里得几何学有很大的区别了。
黎曼认识到距离只是加到流形上的一个结构,因此在同一流形上可以有众多的黎曼度量,从而摆脱了经典微分几何曲面论中局限于诱导度量的束缚。这是一个杰出的贡献。
其后,E.B.克里斯托费尔、G.里奇等人又进一步发展了黎曼几何,特别是里奇发展了张量分析的方法,这在广义相对论中起了基本的作用。1915年A.爱因斯坦创立了广义相对论,使黎曼几何在物理中发挥了重大的作用,对黎曼几何的发展产生了巨大的影响。广义相对论真正地用到了黎曼几何学,但其度量形式不是正定的,现称为洛伦茨流形的几何学(见广义相对论)。
广义相对论产生以来,黎曼几何获得了蓬勃的发展,特别是Eacute.嘉当在20世纪20~30年代开创并发展了外微分形式与活动标架法,建立起李群与黎曼几何之间的联系,从而为黎曼几何的发展奠定了重要基础且开辟了广阔的园地,影响极为深远,由此还发展了线性联络及纤维丛方面的研究。
半个多世纪以来,黎曼几何的研究也已从局部发展到整体,产生了许多深刻的并在其他数学分支和现代物理学中有重要作用的结果。随着60年代大范围分析的发展,黎曼几何和偏微分方程(特别是微分算子的理论)、多复变函数论、代数拓扑学等学科互相渗透、互相影响。在现代物理中的规范场理论(又称杨-米尔斯理论)中,黎曼几何也成了一个有力的工具。
徐庆
17数本3班