RNA-seq分析:从fastq到差异表达基因

RNA-seq的数据分析是比较简单基础的分析,大概流程就是处理下机的fastq数据(trimmomatic),比对到人类基因组(hisat2)然后统计每个基因上出现的counts数(featureCounts),接下来在R里进行差异表达分析(DEseq2)找出差异表达基因再进行一些富集分析(clusterprofiler)。
因为前几天刚好处理了一批60个样本的RNA-seq数据,我把每一步都记录下来。
首先是在linux下进行处理,得到每个样本的counts数文件。

#!/bin/sh

fq_path=/work/data/lch_analysis
out_path="/work/analysis/lch_analysis"
trim_path="/opt/Trimmomatic-0.35"
hisat2_path="/opt/"
ht2_genome="/work/database/human/HISAT2/UCSC_hg19_Human"
gtf="/work/database/human/GTF/gencode.v27lift37.annotation.gtf"

cd $fq_path || exit 1
for file in $(ls | grep _1.fq.gz)
        do
        pre_name=${file%_good_1.fq.gz}
        mkdir -p $out_path/$pre_name/log
        fq1="${pre_name}_good_1.fq.gz"
        fq2="${pre_name}_good_2.fq.gz"

        # Step 0
        # Trim reads using Trimmomatic
        java -Xmx4g -jar \
        $trim_path/trimmomatic-0.35.jar \
        PE \
        -threads 4 \
        -phred33 \
        $fq1 \
        $fq2 \
        -baseout $out_path/$pre_name/${pre_name}_trimmed.fq.gz \
        ILLUMINACLIP:$trim_path/adapters/TruSeq2-PE.fa:2:30:10:6:true \
        SLIDINGWINDOW:4:15 \
        MINLEN:51 \
                2> $out_path/$pre_name/log/${pre_name}_Trimmomatic.log

        # Step 1
        # Map reads to hg19 reference
        hisat2 \
        -p 4 -q \
        -x $ht2_genome/genome \
        --fr \
        --rg-id ${pre_name} \
        --rg SM:${pre_name} --rg LB:${pre_name} --rg PL:ILLUMINA \
        -1 $out_path/$pre_name/${pre_name}_trimmed_1P.fq.gz \
        -2 $out_path/$pre_name/${pre_name}_trimmed_2P.fq.gz | samtools sort -@ 4 - \
        -T $out_path/$pre_name/log/rna_temp \
        -l 1 \
        -o $out_path/$pre_name/${pre_name}_sorted.bam \
        2> $out_path/$pre_name/log/${pre_name}_samtools_sort.log

        # Step 2
        # Count number of reads on genes
        featureCounts \
                -T 4 \
                -p \
                -t exon \
                -g gene_id \
                -a $gtf \
                -o $out_path/$pre_name/${pre_name}_featureCounts.txt \
                $out_path/$pre_name/${pre_name}_sorted.bam \
                2> $out_path/$pre_name/log/${pre_name}_featureCounts.log

        done

上述步骤挺简单的,就不赘述了。接下来是在R中的处理,因为共有60个文件,所以要批量读入处理,这里就要用到lapply和sapply函数了。
lapply的使用格式为:
lapply(X, FUN, ...)
lapply的返回值是和一个和X有相同的长度的list对象,这个list对象中的每个元素是将函数FUN应用到X的每一个元素。其中X为List对象(该list的每个元素都是一个向量),其他类型的对象会被R通过函数as.list()自动转换为list类型。
函数sapply是函数lapply的一个特殊情形,对一些参数的值进行了一些限定,其使用格式为:
sapply(X, FUN,..., simplify = TRUE, USE.NAMES = TRUE)
sapply(x, simplify = FALSE, USE.NAMES = FALSE) 和lapply()的返回值是相同的。如果参数simplify=TRUE,则函数sapply的返回值不是一个list,而是一个矩阵;若simplify=FALSE,则函数sapply的返回值仍然是一个list。

source("http://bioconductor.org/biocLite.R")
biocLite("DESeq2")
library(DESeq2)
library(org.Hs.eg.db)
library(pheatmap)
setwd('/work/work/rna-seq-lhc/deseq2_results')
##读取同一目录下的所有文件
path <- "/work/work/rna-seq-lhc/featurecounts_results_cut" ##文件目录
fileNames <- dir(path)  ##获取该路径下的文件名
filePath <- sapply(fileNames, function(x){ 
  paste(path,x,sep='/')})   ##生成读取文件路径
data <- lapply(filePath, function(x){
  read.table(x,sep = '\t', header=F,stringsAsFactors = F)})  ##读取数据,结果为list

data2 <- lapply(data, function(x){data.frame(ID=gsub('\\..*', '', x$V1), Count=x$V2)})##去掉ensemble版本号
data3 <- do.call(cbind, data2)##把60个样本合并
data4 <- data3
data4$ID <- data4$`Human_J429-ZX01-L01_featureCounts.txt.ID`
data4 <- data4[,c('ID', grep('Count$', colnames(data4), value = T))]
data5=aggregate(data4[,-1],by=list(data4$ID),sum)##重复的基因相加
rownames(data5)=data5$Group.1
data5=data5[,-1]
colnames(data5)=unlist(strsplit(colnames(data5),'_f'))[seq(1,ncol(data5)*2,by=2)]
data5[1:6,1:6]

table=read.csv('/work/work/rna-seq-lhc/分组信息.csv')
table1=table[table$condition=='before'|table$condition=='after',]##选出治疗前和治疗后的病人
count1=data5[,table1$name]
countmatrix1<-as.matrix(count1)
dds1 <- DESeqDataSetFromMatrix(countmatrix1, colData=table1, design= ~ condition)
dds1 <- dds1[ rowSums(counts(dds1)) > 1, ]
dds1 <- DESeq(dds1)##标准化
res1 <- results(dds1)
res1$genesymbol <- mapIds(org.Hs.eg.db,keys = rownames(res1),column = "SYMBOL",keytype ="ENSEMBL",multiVals = 'first')##加一列基因symbol
res1 <- res1[order(res1$padj),]
res1 <- res1[,c(7,1,2,3,4,5,6)]
res1 <- merge (as.data.frame(res1),as.data.frame(counts(dds1,normalize=TRUE)),by="row.names",sort=FALSE)
write.table(res1[1:1000,],"result_before_after_1000.csv", sep = ",", row.names = T)
differgenes1<-subset(res1,padj<0.05&(log2FoldChange>1|log2FoldChange< -1))

log2.norm.counts1 <- as.data.frame(log2(counts(dds1,normalize=T)+1))[differgenes1$Row.names,]
log2.norm.counts1[log2.norm.counts1>3]=3
log2.norm.counts1 <- t(scale(t(log2.norm.counts1)))##scale
annotation_col1 <- data.frame(condition=table1$condition)
rownames(annotation_col1) <- table1$name
pheatmap(log2.norm.counts1, cluster_rows=TRUE, show_rownames=FALSE,
         cluster_cols=T, annotation_col = annotation_col1)

输出的res1就是差异表达前一千的基因,后面是DEseq2标准化后的counts数。如果有需要,还可以做一些tsne图,火山图,富集图。我并没有做,在这里把之前相关的脚本贴一下。
火山图

#valcano plot
library(ggplot2)
library(openxlsx)
library(ggrepel)
library(dplyr)
data=read.xlsx('~/桌面/初步分析2-egfl7.xlsx',sheet = 1)
#data=read.xlsx('~/桌面/初步分析-mir126.xlsx',sheet = 1)

data$threshold <- as.factor(ifelse(data$pvalue < 0.05 & abs(data$log2FC) >= 1,ifelse(data$log2FC > 1 ,'Up','Down'),'Not'))
p=ggplot(data=data,aes(x=log2FC, y =-log10(pvalue),colour=threshold,fill=threshold)) +
  scale_color_manual(values=c("blue", "grey","red"))+
  geom_point(alpha=0.8, size=1.2)+
  xlim(c(-4, 4)) +
  theme_bw(base_size = 12, base_family = "Times") +
  geom_vline(xintercept=c(-1,1),lty=4,col="grey",lwd=0.6)+
  geom_hline(yintercept = -log10(0.05),lty=4,col="grey",lwd=0.6)+
  theme(legend.position="right",
        panel.grid=element_blank(),
        legend.title = element_blank(),
        legend.text= element_text(face="bold", color="black",family = "Times", size=8),
        plot.title = element_text(hjust = 0.5),
        axis.text.x = element_text(face="bold", color="black", size=12),
        axis.text.y = element_text(face="bold",  color="black", size=12),
        axis.title.x = element_text(face="bold", color="black", size=12),
        axis.title.y = element_text(face="bold",color="black", size=12))+
  labs(x="log2 (fold change)",y="-log10 (p-value)",title="Volcano picture of DEG")

p+geom_text_repel(data=filter(data, pvalue< 4.32E-09), aes(label=genesymbol),show_guide=F)##把p值小于4.32E-09的基因标注出来

tsne图

##tsne
tsne_matrix <- t(degs_counts)
tsne_result <- Rtsne(tsne_matrix,perplexity = 3,pca = F,theta=0.5)
tsne_plot <- data.frame(Cluster.1 = tsne_result$Y[,1], Cluster.2 = tsne_result$Y[,2], 
                        Type = factor(annotation$Type,levels = c("health","before")))
ggplot(tsne_plot) + 
  geom_point(aes(x=Cluster.1, y=Cluster.2, color=Type)) +
  theme_bw(base_size = 12, base_family = "") +
  theme(legend.justification=c(0,0),legend.position = c(0.75,0.75),
        legend.title = element_blank(),
        legend.text = element_text(size = 10)) + 
  ggtitle("t-SNE Clustering (top 100 DEGs)") + 
  theme(plot.title = element_text(hjust = 0.5))
dev.off()

GO、KEGG富集

source("https://bioconductor.org/biocLite.R")
biocLite("org.Hs.eg.db")
setwd("/work/R语言/")
library(org.Hs.eg.db)
#install clusterProfiler
source("https://bioconductor.org/biocLite.R")
biocLite("org.Mm.eg.db")
library(org.Mm.eg.db)
biocLite("clusterProfiler")
library(clusterProfiler)
#GO
ego<-enrichGO(OrgDb="org.Mm.eg.db", 
             #gene = row.names(differgenes),
             gene = rownames(results[grep("1",results$GeneCluster),]),
             pvalueCutoff = 0.01,
             keytype = "ENSEMBL",
             readable=TRUE)
write.csv(as.data.frame(ego),"G-enrich.csv",row.names =F)

#KEGG
a=read.csv("/work/new_output/filter_immune/at2_subtype/at2.csv",header = T,sep = ",",stringsAsFactors = F)
x<-select(org.Mm.eg.db,
          keys = a[,z], 
          column = "ENTREZID", 
          keytype = "ENSEMBL"
          )
kegg<-x10[,2]
ekk <- enrichKEGG(gene=kegg,
                  keyType = "kegg",
                  organism = 'mmu',
                  pvalueCutoff = 0.05,
                  pAdjustMethod = "BH", 
                  qvalueCutoff = 0.1)
DOSE::dotplot(ekk, font.size=10)
  write.csv(as.data.frame(ekk),y,row.names =F)
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,271评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,275评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,151评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,550评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,553评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,559评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,924评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,580评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,826评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,578评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,661评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,363评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,940评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,926评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,156评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,872评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,391评论 2 342

推荐阅读更多精彩内容