由于ncbi的genome搜索结果的页面对应的翻页操作发送的请求是个post请求,并且其参数众多不太好用requests模块直接请求到页面,因此直接用selenium模拟翻页操作获得每页源码数据即可,由于结果比较多,因此考虑使用多线程/异步/多进程等等,这里用的是线程池的操作,我在这里调用8个线程,针对是哺乳类基因组页面的搜索结果,还是比较快的,一共22页,每个步骤/参数/函数的作用都标注出来了。
from lxml import etree
from selenium import webdriver
from multiprocessing.dummy import Pool
from functools import partial
import os
import requests
# 实现无可视化界面
from selenium.webdriver.chrome.options import Options
# 实现规避检测
from selenium.webdriver import ChromeOptions
def setoption():
"""
谷歌浏览器常规反反爬的参数设置
"""
# 实现无可视化界面的操作
chrome_options = Options()
chrome_options.add_experimental_option(
'excludeSwitches', ['enable-logging'])
chrome_options.add_argument("--headless")
chrome_options.add_argument("--disable-gpu")
# 实现规避检测
option = ChromeOptions()
option.add_experimental_option("excludeSwitches",
["enable-automation"])
return chrome_options, option
def getonepage(pagetext, filepath):
"""
得到一页所有物种对应详情页的物种名+基因组信息统计,
并且写入到文件当中。
"""
tree = etree.HTML(pagetext)
initurl = "https://www.ncbi.nlm.nih.gov"
div_list = tree.xpath(
'//*[@id="maincontent"]/div/div[5]/div[@class="rprt"]')
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 \
(KHTML, like Gecko) Chrome/83.0.4103.97 Safari/537.36"
}
for div in div_list:
detail_url = initurl + div.xpath('.//p/a/@href')[0]
response = requests.get(detail_url, headers=headers)
response = response.content.decode()
detail_html = bytes(bytearray(response, encoding='utf-8'))
detail_tree = etree.HTML(detail_html)
name = detail_tree.xpath(
'//*[@id="maincontent"]/div/div[5]/div/div[2]/table[1]//tr//span[1]/text()')[0]
summary = "".join(detail_tree.xpath(
'//*[@id="mmtest1"]/div/div/div/table//tr//text()'))
print(name, summary, sep="\n")
with open(filepath, "a", encoding="utf-8") as fp:
fp.write(name+"\n"+summary+"\n")
def mainprocess(chrome_options, option, executable_path, filepath, thread=4):
"""
开启selenium无头浏览器,先得到每一页的源码数据存储,
然后用每页源码数据作为参数,进行多线程搭建。
"""
# 让selenium规避被检测到的风险
bro = webdriver.Chrome(executable_path=executable_path,
chrome_options=chrome_options,
options=option)
bro.get("https://www.ncbi.nlm.nih.gov/genome/?term=txid40674%5BOrganism%3Aexp%5D")
# 生成用于多线程使用的参数列表
pagetext_list = []
# 获取当前页源码数据
pagetext = bro.page_source
print("Append page1 to the queue.")
pagetext_list.append(pagetext)
# 获取全部页码总数
allpagetree = etree.HTML(pagetext)
allpage = int(allpagetree.xpath('//*[@id="pageno2"]/@last')[0])
# 将每页的源码数据加入多线程参数列表
for pagenum in range(2, allpage+1):
next_btn = bro.find_element_by_xpath(
"/html/body/div[1]/div[1]/form/div[1]/div[4]/div/div[7]/div/a[1]")
next_btn.click()
pagetext = bro.page_source
print(f"Append page{pagenum} to the queue.")
pagetext_list.append(pagetext)
# 检测是否存在之前的文件
if os.path.isfile(filepath):
os.remove(filepath)
# 多线程使用
pool = Pool(thread)
# param = {pagetext: pagetext_list, filepath: filepath}
pool.map(partial(getonepage, filepath=filepath), pagetext_list)
pool.close()
pool.join()
bro.quit()
if __name__ == "__main__":
chrome_options, option = setoption()
mainprocess(chrome_options, option,
r"chromedriver.exe", "genomeinfo.txt", 8)