R语言求解混合线性方程组(有系谱)

R语言求解混合线性方程组(有系谱)

王金玉, 陈国宏. 数量遗传与动物育种[M]. 东南大学出版社, 2004.
第十六章: BLUP育种值估计

用矩阵混合线性方程组计算:方差组分已知

数据

dat

Y = Xb + Za + e

> dat <- data.frame(id=c(4,5,6),sire = c(1,3,3),dam=c(2,2,4),y=c(200,170,180))
> dat
  id sire dam   y
1  4    1   2 200
2  5    3   2 170
3  6    3   4 180
> for( i in 1:3) dat[,i] <- as.factor(dat[,i])
> str(dat)
'data.frame':   3 obs. of  4 variables:
 $ id  : Factor w/ 3 levels "4","5","6": 1 2 3
 $ sire: Factor w/ 2 levels "1","3": 1 2 2
 $ dam : Factor w/ 2 levels "2","4": 1 1 2
 $ y   : num  200 170 180
> dat
  id sire dam   y
1  4    1   2 200
2  5    3   2 170
3  6    3   4 180

A-1

> Ainv <- makeAinv(pped)$Ainv;Ainv
6 x 6 sparse Matrix of class "dgCMatrix"
                           
1  1.5  .    0.5 -1.0  .  .
3  .    2.0  0.5  0.5 -1 -1
2  0.5  0.5  2.0 -1.0 -1  .
4 -1.0  0.5 -1.0  2.5  . -1
5  .   -1.0 -1.0  .    2  .
6  .   -1.0  .   -1.0  .  2
> cbind(XpX,XpZ)
     [,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,]    3    0    0    0    1    1    1
> cbind(ZpX,ZpZ+Ainv*alpha)
6 x 7 sparse Matrix of class "dgCMatrix"
                     
1 .  3  .  1 -2  .  .
3 .  .  4  1  1 -2 -2
2 .  1  1  4 -2 -2  .
4 1 -2  1 -2  6  . -2
5 1  . -2 -2  .  5  .
6 1  . -2  . -2  .  5

混合线性方程组:LHS

> LHS=rbind(cbind(XpX,XpZ),cbind(ZpX,ZpZ+Ainv*alpha)) #LHS
> LHS
7 x 7 sparse Matrix of class "dgCMatrix"
                     
  3  .  .  .  1  1  1
1 .  3  .  1 -2  .  .
3 .  .  4  1  1 -2 -2
2 .  1  1  4 -2 -2  .
4 1 -2  1 -2  6  . -2
5 1  . -2 -2  .  5  .
6 1  . -2  . -2  .  5

混合线性方程组:RHS

RHS
> RHS=rbind(Xpy,Zpy) #RHS
> RHS
     [,1]
[1,]  550
[2,]    0
[3,]    0
[4,]    0
[5,]  200
[6,]  170
[7,]  180

求解方程

> sol=solve(LHS)%*%RHS #
> sol
7 x 1 Matrix of class "dgeMatrix"
            [,1]
[1,] 183.1993935
[2,]   2.7445034
[3,]  -3.1235785
[4,]   0.3790751
[5,]   4.3062926
[6,]  -3.7376801
[7,]  -0.1667930

用asreml计算BLUP值,方差组分定义

计算逆矩阵

ainv <- asreml.Ainverse(dat[,1:3])$ginv

定义方差组分,为固定的值

Va <- (1/2)*Ve;names(Va) <- c("F")
Ve <- 6666.67;names(Ve) <- c("F")

拟合模型

mode <- asreml(y ~ 1, random=~ ped(id,init=Va),
               family=asreml.gaussian(dispersion = Ve), 
               ginverse =list(id=ainv),data=dat)

结果查看

> summary(mode)$varcomp
               gamma component std.error z.ratio constraint
ped(id)!ped 3333.335  3333.335        NA      NA      Fixed
R!variance  6666.670  6666.670        NA      NA      Fixed
> coef(mode)$random
              effect
ped(id)_1  2.7445034
ped(id)_3 -3.1235785
ped(id)_2  0.3790751
ped(id)_4  4.3062926
ped(id)_5 -3.7376801
ped(id)_6 -0.1667930
> summary(mode,all=T)$coef.random
            solution std error      z ratio
ped(id)_1  2.7445034  56.40660  0.048655711
ped(id)_3 -3.1235785  55.86638 -0.055911592
ped(id)_2  0.3790751  57.25153  0.006621222
ped(id)_4  4.3062926  54.53877  0.078958379
ped(id)_5 -3.7376801  54.26003 -0.068884590
ped(id)_6 -0.1667930  55.18367 -0.003022507

注意,这里blup值的标准误,它的计算方法是Ve*diag(solve(LHS))计算出来的。

所有R语言的代码

# data

y=c(110,100,110,100,100,110,110,100,100)
Herd <- c(1,1,2,2,2,3,3,3,3)
Sire <- c("ZA","AD","BB","AD","AD","CC","CC","AD","AD")
dat <- data.frame(Herd,Sire,y)
dat
X = matrix(c(1,1,0,0,0,0,0,0,0,
             0,0,1,1,1,0,0,0,0,
             0,0,0,0,0,1,1,1,1),9, byrow=F)
X
Z = matrix(c(1,0,0,0,0,0,0,0,0,
             0,0,1,0,0,0,0,0,0,
             0,0,0,0,0,1,1,0,0,
             0,1,0,1,1,0,0,1,1),9, byrow=F)
Z  
I1=diag(4)
I2=diag(9)
# 方差组分固定值
se=1
su=0.1
G=I1*su
R=I2*se

V = Z%*%G%*%t(Z) + R
V

Vinv <- solve(V)

blue <- solve(t(X)%*%Vinv%*%X)%*%t(X)%*%Vinv%*%y
blue

blup <- G%*%t(Z)%*%Vinv%*%(y - X%*%blue)
blup

# 用混合线性方程组
alpha <- se/su
XpX=crossprod(X) #X’X
XpZ=crossprod(X,Z) #X’Z
ZpX=crossprod(Z,X) #Z’X
ZpZ=crossprod(Z) #Z’Z
Xpy=crossprod(X,y) #X’y
Zpy=crossprod(Z,y) #Z'y
LHS=rbind(cbind(XpX,XpZ),cbind(ZpX,ZpZ+diag(4)*alpha)) #LHS
LHS
RHS=rbind(Xpy,Zpy) #RHS
RHS
sol=solve(LHS)%*%RHS #
sol

# 用asreml进行处理

Ve = 0.1; Va = 1
names(Ve) <- c("F")
names(Va) <- c("F")
dat$Herd <- as.factor(dat$Herd)
mod <- asreml(y ~ Herd-1,random = ~ Sire,data=dat)
model <- asreml(y ~ Herd-1, random = ~ id(Sire,init=Va), 
                family=asreml.gaussian(dispersion = Ve), data=dat)
model <- update(model)
coef(model)
summary(model)$varcomp
dat
write.csv(dat,"d:/dat.csv")



# have pedigree information
dat <- data.frame(id=c(4,5,6),sire = c(1,3,3),dam=c(2,2,4),y=c(200,170,180))
dat
for( i in 1:3) dat[,i] <- as.factor(dat[,i])
str(dat)
dat
ped <- dat[,1:3]
library(nadiv)
pped <- prepPed(ped)
pped
makeA(pped)
Ainv <- makeAinv(pped)$Ainv;Ainv
library(asreml)
library(Matrix)
y <- matrix(c(200,170,180),3,1)
X <- matrix(c(1,1,1),3,1);X
Z <- matrix(c(0,0,0,1,0,0,
              0,0,0,0,1,0,
              0,0,0,0,0,1),byrow = T,3,6);Z


alpha = 2
XpX <- crossprod(X);XpX
XpZ <- crossprod(X,Z);XpZ
ZpX <- crossprod(Z,X);ZpX
ZpZ <- crossprod(Z);ZpZ

Xpy <- crossprod(X,y);Xpy
Zpy <- crossprod(Z,y);Zpy
cbind(XpX,XpZ)
cbind(ZpX,ZpZ+Ainv*alpha)
LHS=rbind(cbind(XpX,XpZ),cbind(ZpX,ZpZ+Ainv*alpha)) #LHS
LHS
RHS=rbind(Xpy,Zpy) #RHS
RHS

# result
sol=solve(LHS)%*%RHS #
sol





ainv <- asreml.Ainverse(dat[,1:3])$ginv
ainv
Va <- (1/2)*Ve;names(Va) <- c("F")
Ve <- 6666.67;names(Ve) <- c("F")
mode <- asreml(y ~ 1, random=~ ped(id,init=Va),
               family=asreml.gaussian(dispersion = Ve), 
               ginverse =list(id=ainv),data=dat)

summary(mode)$varcomp
coef(mode)$random
summary(mode,all=T)$coef.random
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342

推荐阅读更多精彩内容