JanusGraph---Graph Partitioning

图分区

  • JanusGraph集群包含多个存储后端,图被存储在所有机器上。
  • JanusGraph以邻接表形式存储图数据,顶点的分配到机器上的方法就决定了图的分区。
  • 不同场景采用不同的分区策略 。
    • 出现热点场景(一个顶点有大量的边,且该顶点会被经常访问):采用VertexCut(又叫Edge-centric)策略,将边(及其依附的顶点)分配在不同的机器上。
    • 高频率查询的关联节点:应该将关联节点分配在一台机器上,从而减少通信消耗。

JanusGraph Data Layout

  • JanusGraph中数据存储布局。


    image.png

随机分区策略(默认策略)

  • 随机安排顶点到所有机器上。缺点:查询效率慢,因为存在大量的跨实例的通信。

精确分区

  • 具有强关联性和经常访问的子图存储在相同的机器上,这样可以减少跨机器的通信成本。
  • 配置参数
cluster.partition = true       //开启集群自定义分区策略
cluster.max-partitions = 32       //最大的虚拟分区数
ids.flush = false
  • max-partitions:最大虚拟分区数,建议配置为存储数据个数的两倍。
  • 精确分区只有支持key排序的存储后端
    • Hbase:支持图自定义分区
    • Cassandra:需要配置ByteOrderedPartitioner来支持图分区
  • 在图分区下有edge cut和vertex cut两方面可以单独控制。

Edge Cut(默认)

  • Edge cut:一条边的两个顶点分别在不同的机器上,那么这条边叫做cut edge。包含对这条边的遍历的图查询会慢因为需要在两台设备间通信。

  • 目的:对于频繁遍历的边,应该减少cut edge的存在,从而减少跨设备间的通信,提高查询效率。即把进行遍历的相邻顶点放在相同的分区,减少通信消耗。

  • 顶点的id分配:一个分区就是一个有序的id区间,顶点被分配到一个分区就会为该顶点分配一个id,也就是顶点的id决定了该顶点属于哪一个分区。给一个顶点分配id:JanusGraph就会从顶点所属分区的id范围中选一个id值分配给该顶点。(先定分区,在分配id)

  • 为顶点确定分区:JanusGraph通过配置好的 placement strategy来控制vertex-to-partition的分配。

    • 默认策略:在相同事务中创建的顶点分配在相同分区上。
      • 缺点:如果在一个事务中加载大量数据,会导致分配不平衡。
    • 定制分配策略:实现IDPlacementStragegy接口,并在通过配置文件的ids.placement项进行注册。

Vertex Cut

  • Vertex Cut:顶点切割,即把一个顶点进行切割,把一个顶点的邻接表分成多个子邻接表存储在图中各个分区上。
  • 目的:一个拥有大量边的顶点,在加载或者访问时会造成热点问题。Vertex Cut通过分散压力到集群中所有实例从而缓解单顶点产生的负载。
  • 方法:JanusGraph通过label来切割顶点,通过定义vertex label成partition,那么具有该label的所有顶点将被分配在集群中所有机器上。
  • 案例:对于product和user顶点,product顶点应该被定义为partition,因为用户和商品有购买记录(edge),热销商品就会产生大量的购买记录,从而会造成热点问题。
mgmt = graph.openManagement()
mgmt.makeVertexLabel('user').make()      //正常vertex label
mgmt.makeVertexLabel('product').partition().make()  // 分区vertex label
mgmt.commit()

Random vs. Explicit Partitioning 建议

  • 图数据小使用Random分区策略,图大时(超过10亿条边)就要使用自定义分区策略

参考文章

图分区

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,098评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,213评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,960评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,519评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,512评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,533评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,914评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,574评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,804评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,563评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,644评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,350评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,933评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,908评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,146评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,847评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,361评论 2 342

推荐阅读更多精彩内容