自下而上数据驱动商业化设计

1 前言:如何使用数据-两种思考模式

自上而下:我们有了某些商业或是设计目标,如提升XXX的用户体验,然后根据这个目标去寻找合理的数据指标,如软件的响应度、出错率、成功完成任务率、NPS等,然后再进行分析与挖掘(横纵对比、漏斗分析),最后进行数据验证-是否达到了目标。自上而下需要我们有大量的可使用的数据、强大的数据后台,达到完美的目标-结果的数据验证路径。

自下而上:自下而上则是基于当前我们当前有的数据,得到一些洞察,挖掘出机会点,最后达到相对智能和灵活的数据驱动的商业智能化。

2、我们的数据——来一场数据全链路之旅

今天我们就从数据的角度,帮助大家用数据驱动商业化的设计。在开始之前,首先想和大家来一场数据之旅。到底哪些是数据呢?数据只是指代那些数字吗?

其实我们每天都接触到很多很多的数据,是不是由于工作的角色或是敏感性,我们甚至都没有意识到这些是数据,且这些是有用的数据。

根据产品的整体生命周期,都会有产品内部数据、外部数据,后台沉淀的行为大数据,和更加立体生动的行为和态度的数据。

需求期:我们有行业分析/竞品分析的数据,用户画像:

设计期和开发期:针对原型/视觉稿进行测试,上线前的专家走查、可用性测试等;

运营期:经营数据、用户沉淀下来的行为数据、问卷收集用户的行为和态度。

2.1 行业和竞品数据

需求前期,了解行业的走向(风口),部分决定了我们后续的用户定位、推广的打法等。

尤其我们身处于B端,跟C端的消费者领域很不一样。C端的电商、快消领域,每个人很天然地从日常经历知道乳制品的巨头是谁,毕竟蒙牛和伊利从超市货架上的类型最多(有常温奶、低温奶、巴士、益生菌、奶酪等)、子品类最多(安慕希、特仑苏等),广告也最多,甚至我旅游也能感知到乳制品的地域差异特征,光明在北京买不到,三元在杭州很少。

但B端就太不一样了,在大部分人缺乏财务背景、缺乏实战经验,我们是很难了解这个行业的情况、甚至竞品是谁。此时,有人给我介绍下我所在的领域,告诉本产品的市场位置,那是大有裨益的。

行业分析通常就是回答:这个领域的蛋糕怎么样(大吗?质量好吗?现在切了多少了)、我还要吃吗(我能吃多少、我是吃哪部分-奶油/还是果粒)、也吃蛋糕的人比我好还是比我查。

行业分析好像很难的样子,确实很有用?但我怎么拿到呢

你可以去找券商报告、财报、第三方的咨询机构的报告,当然最方便的是万能的百度(其实也不是很难)。你可以迅速

以代账为例,如下操作,一定会发现一些有用的信息

-2019年的代账机构有多少家、规模多少、新增占比多少、同比增加多少?

-我们的市场占有率怎么样(当前服务的机构/总体)

-代账市场的痛点是怎么样的?

2.2 用户画像

用户画像现在已经是产品的标配了,几乎所有的公司和产品在新官上任或是产品开始的时候都会说,用户画像,类似如下图。

但有一个趋势提醒大家注意,相对于传统的用户画像(以虚拟、鲜活、生动的人物形象去表征),我们发现,越来越多的产品又开始回归数据去定位用户:

如用户的年龄、性别、城市级别、平时的爱好、触媒渠道等可以直接落地于销售的点。

但即便如此,用户画像对于前期新人的用户定位,快速了解自己的产品,也是有极好的帮助的。

2.3 设计和开发期

设计和开发期会有一些可用性测试/远程测试,包括但不限于某些短平快的用户测试、快速的选择反馈等。

2.4 运营期——数据沉淀最为丰富的阶段

运营期:是整个产品周期里面时间最长,且有最丰富数据的阶段。里面包括:

2.4.1 经营数据

经营数据:主要指KPI,如营收、活跃用户以及产品的重要战略和规划。

我们可以从哪儿哪里去获取呢?

用人格魅力去要一些数据;

各种月报、年度规划、立项报告等

上市企业的年报、季报等

拿到了这些数据,我们至少内部可以对自己的手头项目有一些了解,包括:当前项目的阶段的时期(初期的新项目、营收形式较好的成长期,还是正在市场拓展前期),后续的规划等,以便后期自己在对项目的重点把控上有更好的判断。

2.4.2 后台行为数据

后台行为数据:是即时、获取效率最高、最简单的数据方式。

典型的后台数据,如电商方面的漏斗数据等。

诸如电商平台等已经实现了相对的商业智能化。如网易严选的数据后台除了全链路的数据后台,包括:

用户数据-流量、渠道来源、新客浏览页面、ROI;商品数据-各个品类下的商品浏览情况、品类客单价、转化率;经营数据:GMV、毛利水平、新客GMV等;库存数据和供应商数据:如供应商级别、库存预警等。

严选也已经开始数据工具化:一旦某款低价商品,购买率过多,影响到了毛利率,就会触发熔断机制,页面立即显示【售罄】。

插播测一测,以上的内容博客网站暴露出了哪些问题?

答案揭晓:

1、总体数据来看,用户使用深度很浅,平均每人浏览量仅仅是1.3(4021/3552),来了只看一个页面就离开;

2、浏览量最高的页面【SEO公司的秘密武器】超过了主页,这也提示该页面是一个引流内容,但其跳出/退出率很高,建议其在页面下方加入相似文章等发挥引流作用;

3、页面3和6等,需要优化,包括3和6等

4、页面8和9表现良好,停留时间和跳出率均不错,他们的主题均为backline相关,这也提示我们后续可以对内容主题进行上下文的联系,引起读者兴趣。

2.4.3 用户的行为和态度

通常是一些问卷和用户定性访谈等。我们希望数据不仅仅是大数据(big data)还是厚数据(thick data)。我们去感受用户面临的场景,了解其背后的动机等。

如果你的结论发现:用户年龄较大,40岁+用户,你会有哪些洞察呢?

抛砖引玉的结论

3、最后

希望这篇文章可以提高大家的数据意识,良好的数据意识是后续数据洞察以及数据转化能力(如商业智能、用户洞察)等的基础,请不要因为“没有数据”而却步,试试拓展对数据的边界和了解,探索工作中的数据。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342