lesson 01 方程组的几何解释

课程视频地址:

http://open.163.com/movie/2010/11/7/3/M6V0BQC4M_M6V29E773.htm

课程笔记转自以下地址(加上一些个人见解的补充):

http://nbviewer.jupyter.org/github/zlotus/notes-linear-algebra/blob/master/chapter01.ipynb

简书好像没有输入公式的语法?所以方程组和矩阵都截图贴过来了。。。

1. 方程组和 “行图像” 和 “列图像”
  • 行图像

我们从求解线性方程组来开始这门课,从一个普通的例子讲起:方程组有2个未知数,一共有2个方程,分别来看方程组的“行图像”和“列图像”。

有方程组:

01.png

写作矩阵形式有:

02.png

通常我们把第一个矩阵称为系数矩阵A,将第二个矩阵称为向量x,将第三个矩阵称为向量b,于是线性方程组可以表示为Ax=b。

那么,在直角坐标系中,这个方程组的行图像可以表示为:


方程组的“行图像”.png

在二维直角坐标系中,每个方程代表一条直线。上图是我们都很熟悉的直角坐标系中两直线相交的情况,相交的点即是方程组的解。

  • 列图像

接下来我们按列观察方程组:

03.png

我们把第一个向量称作col1,第二个向量称作col2,以表示第一列向量和第二列向量,要使得式子成立,需要第一个向量加上两倍的第二个向量,即:


04.png

在二维平面上画出上面的列向量(即方程组的"列图像"):


方程组的“列图像”.png

如上图,绿向量col1与蓝向量(两倍的蓝绿向量col2)合成红向量b。

接着,我们继续观察
05.png

col1,col2 的某种线性组合得到了向量b,那么col1,col2的所有线性组合能够得到什么结果?它们将铺满整个平面。

2. 三个未知数的方程组

有方程组:

06.png

写作矩阵形式:

07.png

在三维直角坐标系中,每一个方程将确定一个平面,而例子中的三个平面会相交于一点,这个点就是方程组的解。

同样的,将方程组写成列向量的线性组合,观察列图像:

08.png

这里是教授特意安排的例子中最后一个列向量恰巧等于等式右边的b向量,所以我们需要的线性组合为x=0,y=0,z=1。假设我们令:


09.png

则需要的线性组合为x=1,y=1,z=0。

我们并不能总是这么轻易的求出正确的线性组合,所以下一讲将介绍消元法——一种线性方程组的系统性解法。

3. 方程组是否都有解?

现在,我们需要考虑,对于任意的b,是否都能求解Ax=b?用列向量线性组合的观点阐述就是,列向量的线性组合能否覆盖整个三维向量空间?对上面这个例子,答案是肯定的,这个例子中的A是我们喜欢的矩阵类型,但是对另一些矩阵,答案是否定的。那么在什么情况下,三个向量的线性组合得不到b?

如果三个向量在同一个平面上,问题就出现了——那么他们的线性组合也一定都在这个平面上。举个例子,比如col3=col1+col2,那么不管怎么组合,这三个向量的结果都逃不出这个平面,因此当b在平面内,方程组有解,而当b不在平面内,这三个列向量就无法构造出b。在后面的课程中,我们会了解到这种情形称为奇异、矩阵不可逆。

下面我们推广到九维空间,每个方程有九个未知数,共九个方程,此时已经无法从坐标图像中描述问题了,但是我们依然可以从求九维列向量线性组合的角度解决问题,仍然是上面的问题,是否总能得到b?当然这仍取决于这九个向量,如果我们取一些并不相互独立的向量,则答案是否定的,比如取了九列但实只相当于八列,有一列毫无贡献(这一列是前面列的某种线性组合),则会有一部分b无法求得。

4. 矩阵乘以向量的计算

接下来介绍方程的矩阵形式Ax=b,这是一种乘法运算,举个例子,取


10.png

来看如何计算矩阵乘以向量:

  • 一种方法是,使用列向量线性组合的方式,一次计算一列:


    11.png
  • 另一种方法,使用向量内积,矩阵第一行向量点乘x向量(如何点乘?百度一下,你就知道):

    12.png

教授建议使用第一种方法,将Ax看做A列向量的线性组合。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 194,242评论 5 459
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 81,769评论 2 371
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 141,484评论 0 319
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,133评论 1 263
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,007评论 4 355
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,080评论 1 272
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,496评论 3 381
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,190评论 0 253
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,464评论 1 290
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,549评论 2 309
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,330评论 1 326
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,205评论 3 312
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,567评论 3 298
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 28,889评论 0 17
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,160评论 1 250
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,475评论 2 341
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 40,650评论 2 335

推荐阅读更多精彩内容