Scrapy简记

摘自Scrapy 中文文档

一:入门

  • scrapy startproject tutorial创建新的爬虫项目
  • scrapy crawl quotes 运行名为quotes的爬虫
    示例代码:
import scrapy


class QuotesSpider(scrapy.Spider):
    name = "quotes"
    start_urls = [
        'http://quotes.toscrape.com/page/1/',
        'http://quotes.toscrape.com/page/2/',
    ]

    def parse(self, response):
        for quote in response.css('div.quote'):
            yield {
                'text': quote.css('span.text::text').extract_first(),
                'author': quote.css('small.author::text').extract_first(),
                'tags': quote.css('div.tags a.tag::text').extract(),
            }
  • 运行流程简述
    • Scrapy为Spider的 start_urls 属性中的每个URL创建了 scrapy.Request对象,并将 parse 方法作为回调函数(callback)赋值给了Request。
    • Request对象经过调度,执行生成 scrapy.http.Response方法。
  • Scrap结构


    Scrap结构
  • Engine:引擎负责控制系统所有组件之间的数据流,并在发生某些操作时触发事件。
  • Downloader:下载器负责提取网页并将它们馈送到引擎,然后引擎将其发送给Spiders
  • Spiders:Spiders是Scrapy用户编写的自定义类,用于解析响应并从中提取item项目(也称为抓取的项目)或追加的其他请求。
  • Item Pipeline:Item Pipeline负责处理被蜘蛛提取的item, 典型的任务包括清理,验证和持久性(如将项目存储在数据库中)
  • Downloader middlewares:下载器中间件是位于引擎和下载器之间的特定的钩子,当它们从引擎传递到下载器时处理请求,以及从下载器传递到引擎的响应
  • Scheduler:调度程序接收来自引擎的请求,并将它们排入队列,并在之后,当Engine需要的时候,将requests发送给engine。

二:

命令行工具

Items

爬取的主要目标就是从非结构性的数据源提取结构性数据,Scrapy提供Item对象保存了爬取到得数据。
定义Item

import scrapy
Item使用简单的class定义语法以及 `Field`
class Product(scrapy.Item):
    name = scrapy.Field()  [`Field`]对象指明了每个字段的元数据(metadata)

    price = scrapy.Field()
    stock = scrapy.Field()
    last_updated = scrapy.Field(serializer=str)
Item字段

使用Item


from tutorial.items import DmozItem

class DmozSpider(scrapy.Spider):
    name = "dmoz"
    allowed_domains = ["dmoz.org"]
    start_urls = [
        "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",
        "http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/"
    ]

    def parse(self, response):
        for sel in response.xpath('//ul/li'):
            item = DmozItem()
            item['title'] = sel.xpath('a/text()').extract()
            item['link'] = sel.xpath('a/@href').extract()
            item['desc'] = sel.xpath('text()').extract()
            yield item

Spiders

Spider类定义了如何爬取某个网站。包括了爬取的动作(例如:是否跟进链接)以及如何从网页的内容中提取结构化数据(爬取item).
对spider来说,爬取的循环类似下文:

  1. 以初始的URL初始化Request,并设置回调函数。 当该request下载完毕并返回时,将生成response,并作为参数传给该回调函数。
    spider中初始的request是通过调用 start_requests() 来获取的。 start_requests() 读取 start_urls 中的URL, 并以 parse 为回调函数生成 Request

  2. 在回调函数内分析返回的(网页)内容,返回 Item 对象或者 Request 或者一个包括二者的可迭代容器。 返回的Request对象之后会经过Scrapy处理,下载相应的内容,并调用设置的callback函数(函数可相同)。

  3. 在回调函数内,您可以使用 选择器(Selectors) (您也可以使用BeautifulSoup, lxml 或者您想用的任何解析器) 来分析网页内容,并根据分析的数据生成item。

  4. 最后,由spider返回的item将被存到数据库(由某些 Item Pipeline 处理)或使用 Feed exports 存入到文件中。

虽然该循环对任何类型的spider都(多少)适用,但Scrapy仍然为了不同的需求提供了多种默认spider。

最常用的Spider:CrawlSpider

除了从Spider继承过来的(您必须提供的)属性外,其提供了一个新的属性:rules(爬取规则)
该rules是下面类的实例:

class scrapy.contrib.spiders.Rule(link_extractor, callback=None, cb_kwargs=None, follow=None, process_links=None, process_request=None)
  • link_extractor是一个 Link Extractor对象。 其定义了如何从爬取到的页面提取链接。
  • callback 是一个callable或string(该spider中同名的函数将会被调用)。 从link_extractor中每获取到链接时将会调用该函数。
  • 其余参数参看官方文档
import scrapy
from scrapy.contrib.spiders import CrawlSpider, Rule
from scrapy.contrib.linkextractors import LinkExtractor

class MySpider(CrawlSpider):
    name = 'example.com'
    allowed_domains = ['example.com']
    start_urls = ['http://www.example.com']

    rules = (
        # 提取匹配 'category.php' (但不匹配 'subsection.php') 的链接并跟进链接(没有callback意味着follow默认为True)
        Rule(LinkExtractor(allow=('category\.php', ), deny=('subsection\.php', ))),

        # 提取匹配 'item.php' 的链接并使用spider的parse_item方法进行分析
        Rule(LinkExtractor(allow=('item\.php', )), callback='parse_item'),
    )

    def parse_item(self, response):
        self.log('Hi, this is an item page! %s' % response.url)

        item = scrapy.Item()
        item['id'] = response.xpath('//td[@id="item_id"]/text()').re(r'ID: (\d+)')
        item['name'] = response.xpath('//td[@id="item_name"]/text()').extract()
        item['description'] = response.xpath('//td[@id="item_description"]/text()').extract()
        return item

选择器

当抓取网页时,最常见的任务是从HTML源码中提取数据,Scrapy提取数据有自己的一套机制。它们被称作选择器(seletors),因为他们通过特定的 XPath 或者 CSS 表达式来“选择” HTML文件中的某个部分。
实例:

>>> from scrapy import Selector
>>> doc = """
... <div>
...     <ul>
...         <li class="item-0"><a href="link1.html">first item</a></li>
...         <li class="item-1"><a href="link2.html">second item</a></li>
...         <li class="item-inactive"><a href="link3.html">third item</a></li>
...         <li class="item-1"><a href="link4.html">fourth item</a></li>
...         <li class="item-0"><a href="link5.html">fifth item</a></li>
...     </ul>
... </div>
... """
>>> sel = Selector(text=doc, type="html")
>>> sel.xpath('//li//@href').extract()
[u'link1.html', u'link2.html', u'link3.html', u'link4.html', u'link5.html']
>>> sel.xpath('//li[re:test(@class, "item-\d$")]//@href').extract()
[u'link1.html', u'link2.html', u'link4.html', u'link5.html']
>>>

Item Loaders

Item Loaders提供了一种便捷的方式填充抓取到的 Items。 虽然Items可以使用自带的类字典形式API填充,但是Items Loaders提供了更便捷的API, 可以分析原始数据并对Item进行赋值

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 201,468评论 5 473
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 84,620评论 2 377
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 148,427评论 0 334
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,160评论 1 272
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,197评论 5 363
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,334评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,775评论 3 393
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,444评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,628评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,459评论 2 317
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,508评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,210评论 3 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,767评论 3 303
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,850评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,076评论 1 258
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,627评论 2 348
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,196评论 2 341