从算法原理,看推荐策略

推荐算法简介

目前的推荐算法一般分为四大类:

协同过滤推荐算法

基于内容的推荐算法

混合推荐算法

流行度推荐算法

协同过滤的推荐算法

协同过滤推荐算法应该算是一种用的最多的推荐算法,它是通过用户的历史数据来构建“用户相似矩阵”和“产品相似矩阵”来对用户进行相关item的推荐,以达到精准满足用户喜好的目的。比如亚马逊等电商网站上的“买过XXX的人也买了XXX”就是一种协同过滤算法的应用。

基于内容的推荐算法

基于内容的推荐算法,是将item的名称、简介等进行分词处理后,提取出TF-IDF值较大的词作为特征词,在此基础上构建item相关的特征向量,再根据余弦相似度来计算相关性,构建相似度矩阵。

混合推荐算法

混合推荐算法很好理解,就是将其他算法推荐的结果赋予不同的权重,然后将最后的综合结果进行推荐的方法。

举例来说,比如上述已经提到了三种方式,协同过滤算法中的基于用户和基于item的协同过滤推荐,和基于内容的推荐算法;而混合推荐算法中是将这三种推荐结果赋予不同的权重,如:基于用户的协同过滤的权重为40%,基于item的协同过滤的权重为30%,基于内容的过滤技术的权重为30%,然后综合计算得到最终的推荐结果。

流行度推荐算法

这个很基础,看名字就知道了。这种方法是对item使用某种形式的流行度度量,例如最多的下载次数或购买量,然后向新用户推荐这些受欢迎的item。就和我们平时经常看到的热门商品、热门推荐类似。

浅析推荐算法在实际中的应用

了解了大概原理后,就可以来看看在实际场景中,推荐算法都是怎么使用的吧。(事先声明,这只是我看了相关东西再结合自己理解进去推测的,如果有说错的地方请各位千万放下手中的刀……)

好,下面开始,先说说协同过滤算法在实际中的应用。

协同过滤算法

协同过滤算法一般是怎么做的呢?我们先来看看在图书推荐中的做法:

协同过滤(CF)大致可分为两类:一类是基于邻域的推荐、一类是基于模型的推荐;邻域方法是使用用户对已有item的喜爱程度来推测用户对新item的喜爱程度。与之相反,基于模型的方法是使用历史行为数据,基于学习出的预测模型,预测对新项的喜爱程度。通常的方式是使用机器学习算法,找出用户与项的相互作用模型,从而找出数据中的特定模式。(由于基于模型的方法我也不太理解,暂时不展开说明,感兴趣的可以查阅相关资料)

【基于邻域的推荐】–即是构建用户相似矩阵和产品相似矩阵

假设用户表现出了对一些图片的喜欢情况并进行了相应的评分,情况如下:

不同图书代表不同维度,评分则代表了特征向量在该维度上的投影长度,根据用户对不同图书的喜爱程度建立用户的特征向量,然后根据余弦相似度可以判断用户之间的相似性。根据相似性可以建立用户相似矩阵:

很显然,通过根据用户对历史图书的评分情况,可以得到用户对其的喜爱情况,在此基础上构建出用户特征向量,可以一定程度上判断两个用户在图书品味上的相似程度,进而我们可以认为,若A和B比较相似,可以认为A喜欢的书B也喜欢。

在给A用户进行图书推荐时,找到与其相似度较高的其他用户,然后除去A用户已看过的图书,结合相似用户对某本图书的喜爱程度与该用户与A用户的相似度进行加权,得到的推荐指数越高的图书优先进行推荐。

这应该也是豆瓣等图书社区上使用的推荐算法之一,利用用户之间的相似度来进行推荐。当然,电影推荐也同理。

同理,反过来我们可以按照相似的方位,以用户为维度来构建item的特征向量。 当我们需要判断两本书是否相似时,就去看对这两本书进行过评价的用户构成是否相似,即是使用评价过一本书的用户向量(或数组)表示这本图书;也就是说,如果有两本书的评价中,用户重合度较高,即可认为该两本书相似度较高。其实借用的还是用户相似的基础。(《白话大数据与机器学习》中也提到过相似的推荐算法,感兴趣的同学可以找来看一下)。

在音乐的推荐中同样用到了协同过滤算法,我们众所周知的使用个性化推荐的音乐app应该属「网易云音乐」比较典型了。

那么我们就来yy一下网易云音乐的推荐算法,首先用户过去都会有听歌的历史,由于音乐中没有相关的评分机制,那么可以根据用户对音乐的行为来建立一个喜爱程度模型,例如:收藏-5分,加入歌单-4分,单曲循环-3分,分享-5分,听一遍就删-0分(本来想说负分滚粗的)。这样就大概有了一个喜欢程度列表,于是接下来就可以根据用户的听歌情况,建立用户的特征向量,接下来的推荐就顺利成章了。

当然,基于协同过滤算法的用户相似度矩阵算法应该只是网易云采取的一种推荐方式,接下来还会说到另外的方式。

值得注意的是,协同过滤的推荐算法虽然使用得很广且推荐效果也较好,但还是存在一些不足之处:

协同过滤算法(CF)推荐中存在流行性偏差,因为协同过滤算法是基于惯性数据来进行推荐的,流行的物品由于关注的用户多,产生的数据也多,因此可以建立较为有效的推荐机制;而对于小众或长尾的产品(没人用过也没人评分过),则无法有效推荐;

冷启动问题(又叫做新用户问题,或推荐新项问题),同样是由于惯性数据的缺失,导致一开始的推荐算法无法建立;这样的问题可以通过流行性算法进行一定程度的解决,当然也可以利用基于内容的推荐算法来进行解决(后面会提到)。

基于内容的过滤算法

简介部分已经提到了基于内容的过滤算法的基本原理,这里就不再重复了,直接说一下具体大概是怎么用的吧。

基于内容的过滤方式与协同过滤中建立用户相似矩阵的方式类似,都是利用特征向量来进行余弦相似度计算,从而判断物品的相似性。

首先, 利用分词技术对书籍的标题和内容进行处理,去掉权重为0的词(如的、得、地等);

然后,取 TF-IDF值较大的词作为特征词,并将其提取出来作为标签;

接着, 根据特征词建立书籍的特征向量;

最后, 计算不同书籍之间的余弦相似度,并凭次建立书籍之间的相似度矩阵;

基于内容的协同过滤算法,最主要的初级步骤是通过分词技术对标题和简介等进行处理,形成特征标签。例如,对于图书和电影而言,可以对名称和简介进行特征词提取,从而构建特征向量;当然,在豆瓣上发现可以用一种更省事的方法,就是让用户进行对作品评价时需要勾选相关的标签,这样只要为不同种类提供足够多的标签供用户选择即可(当然这是我猜的);

而如果对于音乐的推荐呢?没有相关简介,歌名也不具备足够的指向性,这种情况下则可以通过音乐本身的类别来作为标签进行特征向量的构建,例如:民谣、摇滚、怀旧等;我猜这也是网易云音乐采用的一种推荐方式吧。

而对于36氪之类的资讯网站,采用什么样的推荐算法也能够有一定程度的理解了吧,原理都是类似的。

基于内容的推荐由于不需要太多的惯性数据,因此可以部分解决冷启动问题和流行性偏差,也就是弥补了协同过滤算法中的部分不足,因此也可以将两者混合起来使用,例如混合推荐算法就是采用了这样的方式;其次,需要注意的是,如果单纯使用基于内容的过滤算法,会出现过度专业化问题,导致推荐列表里面出现的大多都是同一类东西,有的小伙伴可能也观察到了类似的现象,比如在亚马逊上购买哪本书(比如java相关的),会发现推荐的书籍里全是java相关的,就是因为出现了过度专业化的现象。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 201,924评论 5 474
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 84,781评论 2 378
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 148,813评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,264评论 1 272
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,273评论 5 363
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,383评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,800评论 3 393
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,482评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,673评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,497评论 2 318
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,545评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,240评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,802评论 3 304
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,866评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,101评论 1 258
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,673评论 2 348
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,245评论 2 341

推荐阅读更多精彩内容

  • 推荐系统的主要方法 一、基于内容的推荐算法 网络基于内容的推荐系统,也称CB(Content-based Reco...
    Arya鑫阅读 3,514评论 1 6
  • 概述及标签体系搭建 1 概述 随着信息技术的迅速发展和信息内容的日益增长,“信息过载”问题愈来愈严重,愈发带来很大...
    JinkeyAI阅读 22,744评论 10 241
  • -- 原创,未经授权,禁止转载 2017.11.15 -- 对于推荐系统,本文总结内容,如下图所示: 文章很长,你...
    rui_liu阅读 42,918评论 14 256
  • 这篇文章的技术难度会低一些,主要是对推荐系统所涉及到的各部分内容进行介绍,以及给出一些推荐系统的常用算法,比起技术...
    我偏笑_NSNirvana阅读 12,056评论 5 89
  • 因为需要较少的水,所以速冻柜图片 前部装载机通常使用较少的肥皂,并且翻滚的重复的掉落和折叠作用可以容易地产生速冻柜...
    大时代客阅读 184评论 0 0