数据结构之图的遍历

如果是遍历一个数组,只需要从下标0到下标N-1循环就好了,遍历一个链表只需要从头指针开始直到没有next为止,即使是遍历一棵树,也可以从根结点开始,按照前序、中序和后序等方式进行。之所以可以这样,是因为这些结构都可以找到一个明确的起点,但图不同。如下图所示,有的人希望从A开始遍历,有的人喜欢从C开始...,没有办法规定一个明确的起点。

如果没有策略,遍历一个图就像走迷宫一样,有可能在一个结点停留多次,也可能有几个结点永远不会访问到。而图的遍历,通常有深度优先和广度优先方式,接下来我们就看看这两种方式是怎么做的,有什么区别。

深度优先遍历

深度优先遍历(Depth_First_Search)也称为深度优先搜索,简称为DFS。它是从图中某个顶点v出发,访问此顶点,然后从v的未被访问的邻接点出发深度优先遍历图,直至图中所有和v有路径相通的顶点都被访问到。对于非连通图,只需要对它的连通分量分别进行深度优先遍历即可。接下来我们以一个示例演示图的深度优先遍历。如下图所示:

图的深度优先遍历

在开始进行遍历之前,我们还要准备一个数组,用来记录已经访问过的元素。其中0代表未访问,1代表已访问,如下所示:

visited数组

为了便于演示,假设我们是在走迷宫,A是入口,每次都向右手边前进。首先从A走到B,结果如下:

A-B

B之后有三个路,我们依然选择最右边,如此下去,直到走到F,如下所示:

B-F

到达F后,如果我们继续按照向右走的原则,就会再次访问A,此时我们访问除了A后的最右侧通道,也就是访问G,如下所示:

F-G

到达G后,可以发现B和D都走过了,这时候走到H,如下所示:

G-H

到达H后,可以发现D和E都走过了,也就是说走到了尽头,但是并不代表所有的顶点都访问过了,因为除了最右侧顶点,每个顶点还可能和更多的顶点连通,所以我们从H退回到G,发现全部走过了,再向前退回到F,也全部走过了,直到退回到B时,发现 I 还没走过,于是访问顶点 I,如下所示:

B-I

同理,访问 I 之后,发现与 I 连通的顶点都访问过了,所以再向前回退,直到回到顶点A,发现全部顶点都访问过了,至此遍历完毕。

广度优先遍历

深度优先遍历可以认为是纵向遍历图,而广度优先遍历(Breadth_First_Search)则是横向进行遍历。还以上图为例,不过为了方便查看,我们把上图调整为如下样式:

广度优先遍历图

我们依然以A为起点,把和A邻接的B和F放在第二层,把和B、F邻接的C、I、G、E放在第三层,剩下的放在第四层。广度优先遍历就是从上到下一层一层进行遍历,这和树的层序遍历很像。我们依然借助一个队列来完成遍历过程,因为和树的层序遍历很像,这里只展示结果,如下所示:

广度优先遍历队列

对于非连通图,依然通过visited数组来进行判断即可。

代码实现

图的存储方式有很多种,但是用来实现遍历的思路是一致的,我们以邻接矩阵为例,给出DFS和BFS的参考实现。

深度优先遍历实现

private void DFS(int i) {
    // 标记当前元素已经访问
    visited[i] = true;
    System.out.println("当前访问顶点:" + getVertexByIndex(i));

    int next = getFirstNeighbor(i);

    while (next != -1) {
        if (!visited[next]) {
            DFS(next);
        }
        next = getNextNeighbor(i, next);

    }
}

public void DFS() {
    for (int i = 0; i < vertexList.size(); i++) {
        visited[i] = false;
    }
    // 非连通图,不同的连通分量要单独进行DFS
    for (int i = 0; i < vertexList.size(); i++) {
        if (!visited[i]) {
            DFS(i);
        }
    }
}

广度优先遍历实现

private void BFS(int i) {
    // 标记当前元素已经访问
    visited[i] = true;
    System.out.println("当前访问顶点:" + getVertexByIndex(i));

    int cur, next;
    LinkedList<Integer> queue = new LinkedList<>();
    queue.addLast(i);
    while (!queue.isEmpty()) {
        cur = queue.removeFirst();
        next = getFirstNeighbor(cur);
        while (next != -1) {
            if (!visited[next]) {
                // 标记当前元素已经访问
                visited[next] = true;
                System.out.println("当前访问顶点:" + getVertexByIndex(next));
                queue.addLast(next);
            }
            next = getNextNeighbor(cur, next);
        }
    }
}

public void BFS() {
    for (int i = 0; i < vertexList.size(); i++) {
        visited[i] = false;
    }
    for (int i = 0; i < vertexList.size(); i++) {
        if (!visited[i]) {
            BFS(i);
        }
    }
}

完整代码已上传至我的github


我是飞机酱,如果您喜欢我的文章,可以关注我~

编程之路,道阻且长。唯,路漫漫其修远兮,吾将上下而求索。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 201,924评论 5 474
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 84,781评论 2 378
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 148,813评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,264评论 1 272
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,273评论 5 363
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,383评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,800评论 3 393
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,482评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,673评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,497评论 2 318
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,545评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,240评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,802评论 3 304
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,866评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,101评论 1 258
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,673评论 2 348
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,245评论 2 341

推荐阅读更多精彩内容

  • 1. 图的定义和基本术语 线性结构中,元素仅有线性关系,每个元素只有一个直接前驱和直接后继;树形结构中,数据元素(...
    yinxmm阅读 5,420评论 0 3
  • https://zh.visualgo.net/graphds 浅谈图形结构https://zh.visualgo...
    狼之独步阅读 4,102评论 0 0
  • 图是一种比线性表和树更复杂的数据结构,在图中,结点之间的关系是任意的,任意两个数据元素之间都可能相关。图是一种多对...
    Alent阅读 2,276评论 1 22
  • 周日早上去宿舍值班,发现几个问题。 >垃圾桶边上的白瓷砖因为扔垃圾,溅上污点。 个别床单被子整理不够好。 窗台有灰...
    稼轩李德智阅读 246评论 0 0
  • 经常使用vim里面的文本进行粘贴操作嘛?经常因为vim文件内容混乱而苦恼嘛?教你一招,够用!!! Linux上面常...
    择夕_阅读 2,210评论 0 0