深度互学习为什么使用kldivloss作为损失函数?

最近在实践知识蒸馏过程中,在Pytorch中不同损失函数的作用也各有各的不同。在查看Loss源码时,发现具体的损失函数有_WeightedLoss,L1Loss,NLLLoss,NLLLoss2d,PoissonNLLLoss,KLDivLossMSELoss,HingeEmbeddingLoss,CrossEntropyLossMarginRankingLoss,CTCLoss等等类。

今天仔细研习了几种(着重);

1. NLLLoss —— log似然代价函数

The negative log likelihood loss. It is useful to train a classification problem with C classes.
If provided, the optional argument :attr:weight should be a 1D Tensor assigning weight to each of the classes. This is particularly useful when you have an unbalanced training set.

似然函数就是我们有一堆观察所得到的结果,然后我们用这堆观察结果对模型的参数进行估计。
常用于多分类任务,NLLLoss 函数输入 input 之前,需要对 input 进行 log_softmax 处理,即将 input 转换成概率分布的形式,并且取对数,底数为 e,在求取平均值。

class torch.nn.NLLLoss(weight=None, size_average=None, ignore_index=-100, 
                       reduce=None, reduction='mean')

代码解释得很详细

2. KLDivLoss —— 相对熵

Kullback-Leibler divergence_ is a useful distance measure for continuous distributions and is often useful when performing direct regression over the space of (discretely sampled) continuous output distributions.

和交叉熵一样都是熵的计算,其公式为:

image.png

信息量:它是用来衡量一个事件的不确定性的;一个事件发生的概率越大,不确定性越小,则它所携带的信息量就越小。
:它是用来衡量一个系统的混乱程度的,代表一个系统中信息量的总和;信息量总和越大,表明这个系统不确定性就越大。

    def __init__(self, size_average=None, reduce=None, reduction: str = 'mean', log_target: bool = False) -> None:
        super(KLDivLoss, self).__init__(size_average, reduce, reduction)
        self.log_target = log_target

3. CrossEntropyLoss —— 交叉熵

This criterion combines :class:~torch.nn.LogSoftmax and :class:~torch.nn.NLLLoss in one single class.

交叉熵:它主要刻画的是实际输出(概率)与期望输出(概率)的距离,也就是交叉熵的值越小,两个概率分布就越接近。
pytorch中的交叉熵不是公式(概率分布p为期望输出,q为实际输出):

image.png

而是以更加简洁的方式得到,主要是将softmax-log-NLLLoss合并到一块得到的结果,起源码中就曾写道。

image.png
   def __init__(self, weight: Optional[Tensor] = None, size_average=None, ignore_index: int = -100,
                 reduce=None, reduction: str = 'mean') -> None:
        super(CrossEntropyLoss, self).__init__(weight, size_average, reduce, reduction)
        self.ignore_index = ignore_index

通常总结来说就是:

  • 信息熵是该label完美编码所需的信息量。
  • 交叉熵是该label不完美编码(用观察值编码所需的信息量)。
  • 相对熵是交叉熵和信息熵的差值,也就是所需额外的信息量。

为什么kl散度衡量了分布差异,kl散度的本质是交叉熵减信息熵,即,使用估计分布编码真实分布所需的bit数,与编码真实分布所需的最少bit数的差。当且仅当估计分布与真实分布相同时,kl散度为0。因此可以作为两个分布差异的衡量方法

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,980评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,178评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,868评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,498评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,492评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,521评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,910评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,569评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,793评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,559评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,639评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,342评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,931评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,904评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,144评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,833评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,350评论 2 342

推荐阅读更多精彩内容