Bokeh数据可视化工具2绘图进阶

其他数据结构绘图

使用numpy创建线状图

#Creating line plots using NumPy arrays
#Import required packages
import numpy as np
import random
from bokeh.io import output_file, show
from bokeh.plotting import figure

#Creating an array for the points along the x and y axes
array_x =np.array([1,2,3,4,5,6])
array_y = np.array([5,6,7,8,9,10])

#Creating a line plot
plot = figure()
plot.line(array_x, array_y)

#Output the plot
output_file('numpy_line.html')
show(plot)

image.png

使用numpy创建散列图

#Creating scatter plots using NumPy arrays
#Import required packages
import numpy as np
import random
from bokeh.io import output_file, show
from bokeh.plotting import figure

#Creating arrays for two different categories of points
x_red = np.array([1,2,3,4,5])
y_red = np.array([5,6,7,8,9])
x_blue = np.array([10,11,12,13])
y_blue = np.array([14,15,16,17])

#Creating the categorical scatter plot 

plot = figure()
plot.circle(x_red, y_red, size = 9, color = 'red', alpha = 0.8)
plot.circle(x_blue, y_blue, size = 9, color = 'blue', alpha = 0.8)

#Output the plot 
output_file('numpy_scatter.html')
show(plot)
image.png

使用pandas DataFrame创建时序图

苹果股票的高值:

#Creating a time series plot using a Pandas DataFrame
#Importing the required packages
import pandas as pd

#Read in the data
df = pd.read_csv('/home/andrew/code/kaggle-code/stock_data/all_stocks_5yr.csv')

#Filtering for apple stocks
df_apple = df[df['Name'] == 'AAL']
#df_apple.loc['date'] = df_apple['date'].astype('datetime64')
df_apple['date'] = pd.to_datetime(df_apple['date'])
print(df_apple.dtypes)

#Import the required packages
from bokeh.io import output_file, show
from bokeh.plotting import figure

#Create the time series plot
plot = figure(x_axis_type = 'datetime', x_axis_label = 'date', y_axis_label = 'High Prices')
plot.line(x = df_apple['date'], y = df_apple['high'])

#Output the plot
output_file('pandas_time.html')
show(plot)

image.png
  • 参考资料

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.to_datetime.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.astype.html
https://stackoverflow.com/questions/20625582/how-to-deal-with-settingwithcopywarning-in-pandas

另外一个更简单的演示:

import pandas as pd
import numpy as np
from bokeh.plotting import figure, output_file, show
from bokeh.layouts import row

output_file('fig.html')

test = pd.DataFrame({'datetime':pd.date_range('1/1/1880', periods=2000),'foo':np.arange(2000)})

print(test['datetime'])

fig = figure(x_axis_type="datetime")
fig.line(x='datetime',y='foo', source=test)

test = test.set_index('datetime')

fig2 = figure(x_axis_type="datetime")
fig2.line(x='datetime', y='foo', source=test)
show(row(fig, fig2))
image.png
  • 参考资料

https://stackoverflow.com/questions/34974615/timeseries-in-bokeh-using-a-dataframe-with-index

https://bokeh.pydata.org/en/latest/docs/user_guide/plotting.html

https://github.com/CNuge/kaggle-code

  • 同一行创建多个图
  • 同一列创建多个图
  • 行和列中创建多个图
  • 选项卡式布局创建多个绘图
  • 创建强大的网格布局
  • 将多个图表链接在一起

同一行创建多个图

bokeh自带了很多数据,可以用如下方式下载:

In [2]: import bokeh

In [3]: bokeh.sampledata.download()
Creating /home/andrew/.bokeh directory
Creating /home/andrew/.bokeh/data directory
Using data directory: /home/andrew/.bokeh/data
Downloading: CGM.csv (1589982 bytes)
   1589982 [100.00%]
Downloading: US_Counties.zip (3182088 bytes)
   3182088 [100.00%]
Unpacking: US_Counties.csv
Downloading: us_cities.json (713565 bytes)
    713565 [100.00%]
Downloading: unemployment09.csv (253301 bytes)
    253301 [100.00%]
Downloading: AAPL.csv (166698 bytes)
    166698 [100.00%]
Downloading: FB.csv (9706 bytes)
      9706 [100.00%]
Downloading: GOOG.csv (113894 bytes)
    113894 [100.00%]
Downloading: IBM.csv (165625 bytes)
    165625 [100.00%]
Downloading: MSFT.csv (161614 bytes)
    161614 [100.00%]
Downloading: WPP2012_SA_DB03_POPULATION_QUINQUENNIAL.zip (5148539 bytes)
   5148539 [100.00%]
Unpacking: WPP2012_SA_DB03_POPULATION_QUINQUENNIAL.csv
Downloading: gapminder_fertility.csv (64346 bytes)
     64346 [100.00%]
Downloading: gapminder_population.csv (94509 bytes)
     94509 [100.00%]
Downloading: gapminder_life_expectancy.csv (73243 bytes)
     73243 [100.00%]
Downloading: gapminder_regions.csv (7781 bytes)
      7781 [100.00%]
Downloading: world_cities.zip (646858 bytes)
    646858 [100.00%]
Unpacking: world_cities.csv
Downloading: airports.json (6373 bytes)
      6373 [100.00%]
Downloading: movies.db.zip (5067833 bytes)
   5067833 [100.00%]
Unpacking: movies.db
Downloading: airports.csv (203190 bytes)
    203190 [100.00%]
Downloading: routes.csv (377280 bytes)
    377280 [100.00%]
#Preparing all the plots needed for this chapter

import pandas as pd
from bokeh.sampledata.stocks import AAPL

df_apple = pd.DataFrame(AAPL)
df_apple['date'] = pd.to_datetime(df_apple['date'])


#Import the required packages

from bokeh.io import output_file, show
from bokeh.plotting import figure
from bokeh.plotting import ColumnDataSource


#Create the ColumnDataSource object

data = ColumnDataSource(data = {
    'x' : df_apple['high'],
    'y' : df_apple['low'],
    'x1': df_apple['open'],
    'y1': df_apple['close'],
    'x2': df_apple['date'],
    'y2': df_apple['volume'], 
})


#Create the first scatter plot
plot1 = figure()
plot1.cross(x = 'x', y = 'y', source = data, color = 'red', size = 10, alpha = 0.8)

#Create the second scatter plot
plot2 = figure()
plot2.circle(x = 'x1', y = 'y1', source = data, color = 'green', size = 10, alpha = 0.3)

#Create the third scatter plot
plot3 = figure(x_axis_type = 'datetime', x_axis_label = 'date', y_axis_label = 'Volume Traded')
plot3.line(x = 'x2', y = 'y2', source = data, color = 'red')
plot3.circle(x = 'x2', y = 'y2', source = data, fill_color = 'white', size = 3)


#Output the 3 plots
#Output the plot1
output_file('first_plot.html')
show(plot1)

#Output the plot2
output_file('second_plot.html')
show(plot2)


#Output the plot3
output_file('third_plot.html')
show(plot3)


#Creating multiple plots along the same row
#Import the required packages
from bokeh.layouts import row
from bokeh.io import output_file, show

#Group the 3 plots into a 'row' layout
row_layout = row(plot1,plot2,plot3)

#Output the plot
output_file('horizontal.html')
show(row_layout)


#Creating multiple plots along the same column

#Import the required packages

from bokeh.layouts import column
from bokeh.io import output_file, show

#Group the 2 plots into a 'column' layout
col_layout = column(plot1,plot2)

#Output the plot
output_file('vertical.html')
show(col_layout)

#Creating multiple plots along a row and column

#Import the required packages

from bokeh.layouts import column, row
from bokeh.io import output_file, show

#Construct the nested layout
nested_layout = column(row(plot1,plot2), plot3)

#Output the plot
output_file('nested.html')
show(nested_layout)



#Creating multiple plots on a tabbed layout

#Import the required packages
from bokeh.models.widgets import Tabs, Panel
from bokeh.io import output_file, show
from bokeh.layouts import column, row

#Create the two panels 

tab1 = Panel(child = plot1, title = 'Tab One')
tab2 = Panel(child = column(plot2,plot3), title = 'Tab Two')

#Feed the tabs into a Tabs object
tabs_object = Tabs(tabs = [tab1, tab2])

#Output the plot
output_file('tab_layout.html')
show(tabs_object)



#Creating a grid layout
#Import required packages

from bokeh.io import output_file, show
from bokeh.layouts import gridplot

#Create the grid layout
grid_layout = gridplot([plot1, plot2], [plot3, None])

#Output the plot
output_file('grid.html')
show(grid_layout)


#Linking multiple plots along the y axis
#Import the required packages

from bokeh.io import output_file, show
from bokeh.layouts import row

#Creating equal y axis ranges
plot3.y_range = plot1.y_range

#Create the row layout
row_layout = row(plot3, plot1)

#Output the plot
output_file('grid.html')
show(row_layout)



#Linking multiple plots along the x axis
#Import the required packages
from bokeh.io import output_file, show
from bokeh.layouts import row

#Creating equal x-axis ranges
plot2.x_range = plot1.x_range

#Create the row layout
row_layout = row(plot2, plot1)

#Output the plot
output_file('row.html')
show(row_layout)
图片.png
图片.png
图片.png
图片.png
图片.png
图片.png
图片.png
图片.png
图片.png
图片.png

参考资料

图片.png
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,098评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,213评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,960评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,519评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,512评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,533评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,914评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,574评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,804评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,563评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,644评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,350评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,933评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,908评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,146评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,847评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,361评论 2 342

推荐阅读更多精彩内容