可视化库seaborn的风格和颜色以及热度图

kaggle titanic数据

#年龄的分布
import pandas as pd
titanic = pd.read_csv('train.csv')
cols = ['Survived', 'Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']
titanic = titanic[cols].dropna()
import seaborn as sns
import matplotlib.pyplot as plt
sns.distplot(titanic['Age'])
plt.show()
年龄分布
import seaborn as sns
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
#%matplotlib inline是jupyter notebook里的命令, 意思是将那些用matplotlib绘制的图显示在页面里而不是弹出一个窗口
%matplotlib inline
def sinplot(flip=1):
    #在区间0-14中找出100个点
    x = np.linspace(0, 14, 100)
    #画出6条不同的sin曲线
    for i in range(1, 7):
        plt.plot(x, np.sin(x + i * .5) * (7 - i) * flip)
sinplot()
图1.png
#set()代表使用seaborn中的默认参数,或者说返回到原先默认的状态
sns.set()
sinplot()
图2.png

seaborn的5种主题风格
darkgrid
whitegrid
dark
white
ticks

#风格whitegrid
sns.set_style("whitegrid")
data = np.random.normal(size=(20, 6)) + np.arange(6) / 2
sns.boxplot(data=data)
风格whitegrid
#风格dark
sns.set_style("dark")
sinplot()
风格dark
#风格white
sns.set_style("white")
sinplot()
风格white
##风格ticks
sns.set_style("ticks")
sinplot()
#风格ticks
sinplot()
#去掉上面和右边的边框
sns.despine()
去掉边框.png
#f, ax = plt.subplots()
sns.violinplot(data)
#offset设置图和轴线的距离
sns.despine(offset=10)
设置图和轴线的距离
sns.set_style("whitegrid")
sns.boxplot(data=data, palette="deep")
#隐去左边框,可以通过true or false 来操作上,下,左,右边框
sns.despine(left=True)
隐去左边框
#在多图作为子图拼接的过程中,可以使用with,with 中为相同风格
with sns.axes_style("darkgrid"):
    plt.subplot(211)
    sinplot()
#with 外为其他风格,这里sinplot(-1)取上图完全相反的风格
plt.subplot(212)
sinplot(-1)
with的子图操作

图的背景的4种风格
paper
talk
poster
notebook

#先恢复默认
sns.set_context("paper")
#figsize调整图的尺寸
plt.figure(figsize=(8, 6))
sinplot()
paper
sns.set_context("talk")
plt.figure(figsize=(8, 6))
sinplot()
talk
sns.set_context("poster")
plt.figure(figsize=(8, 6))
sinplot()
poster
#font_scale用来tiao调整图中字的大小,lines.linewidth调整线的粗细
sns.set_context("notebook", font_scale=1.5, rc={"lines.linewidth": 2.5})
sinplot()
notebook
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set(rc={"figure.figsize": (6, 6)})

调色板

颜色很重要
color_palette()能传入任何Matplotlib所支持的颜色
color_palette()不写参数则默认颜色
set_palette()设置所有图的颜色

分类色板

##6个默认的颜色循环主题: deep, muted, pastel, bright, dark, colorblind
current_palette = sns.color_palette()
sns.palplot(current_palette)
分类色板.png

圆形画板

当你有六个以上的分类要区分时,最简单的方法就是在一个圆形的颜色空间中画出均匀间隔的颜色(这样的色调会保持亮度和饱和度不变)。这是大多数的当他们需要使用比当前默认颜色循环中设置的颜色更多时的默认方案。
最常用的方法是使用hls的颜色空间,这是RGB值的一个简单转换。

sns.palplot(sns.color_palette("hls", 8))
圆形画板1
data = np.random.normal(size=(20, 8)) + np.arange(8) / 2
sns.boxplot(data=data,palette=sns.color_palette("hls", 8))
圆形画板2

hls_palette()函数来控制颜色的亮度和饱和
l-亮度 lightness
s-饱和 saturation

sns.palplot(sns.hls_palette(8, l=.7, s=.9))
亮度和饱和
##让颜色成对出现,例如浅蓝深蓝,浅绿深绿
sns.palplot(sns.color_palette("Paired",8))
颜色成对出现

使用xkcd颜色来命名颜色

xkcd包含了一套众包努力的针对随机RGB色的命名。产生了954个可以随时通过xdcd_rgb字典中调用的命名颜色。

plt.plot([0, 1], [0, 1], sns.xkcd_rgb["pale red"], lw=3)
plt.plot([0, 1], [0, 2], sns.xkcd_rgb["medium green"], lw=3)
plt.plot([0, 1], [0, 3], sns.xkcd_rgb["denim blue"], lw=3)
xkcd1
colors = ["windows blue", "amber", "greyish", "faded green", "dusty purple"]
sns.palplot(sns.xkcd_palette(colors))
xkcd2

连续色板

色彩随数据变换,比如数据越来越重要则颜色越来越深

sns.palplot(sns.color_palette("Blues"))
连续色板1
##如果想要翻转渐变,可以在面板名称中添加一个_r后缀
sns.palplot(sns.color_palette("BuGn_r"))
连续色板2

cubehelix_palette()调色板

色调线性变换

sns.palplot(sns.color_palette("cubehelix", 8))
色调线性变换1
sns.palplot(sns.cubehelix_palette(8, start=.5, rot=-.75))
色调线性变换2
sns.palplot(sns.cubehelix_palette(8, start=.75, rot=-.150))
色调线性变换3

light_palette() 和dark_palette()调用定制连续调色板

sns.palplot(sns.light_palette("green"))
green
sns.palplot(sns.dark_palette("purple"))
purple
sns.palplot(sns.light_palette("navy", reverse=True))
navy
x, y = np.random.multivariate_normal([0, 0], [[1, -.5], [-.5, 1]], size=300).T
pal = sns.dark_palette("green", as_cmap=True)
sns.kdeplot(x, y, cmap=pal);
渐变曲线
sns.palplot(sns.light_palette((210, 90, 60), input="husl"))
手动设置颜色空间

热度图

%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np; 
np.random.seed(0)
import seaborn as sns;
sns.set()

uniform_data = np.random.rand(3, 3)
print (uniform_data)
heatmap = sns.heatmap(uniform_data)

##结果
[[ 0.5488135   0.71518937  0.60276338]
 [ 0.54488318  0.4236548   0.64589411]
 [ 0.43758721  0.891773    0.96366276]]
热度图1.png
##vmin=0.2, vmax=0.5代表最小最大的取值范围
ax = sns.heatmap(uniform_data, vmin=0.2, vmax=0.5)
热度图2.png
##center=0代表colorbar中心的值
normal_data = np.random.randn(3, 3)
print (normal_data)
ax = sns.heatmap(normal_data, center=0)
###结果:
[[ 1.26611853 -0.50587654  2.54520078]
 [ 1.08081191  0.48431215  0.57914048]
 [-0.18158257  1.41020463 -0.37447169]]
热度图3.png

下面用一组航班数据做演示:

flights = sns.load_dataset("flights")
##flights = flights.pivot("month", "year", "passengers")代表横轴纵轴和值
flights = flights.pivot("month", "year", "passengers")
print (flights)
ax = sns.heatmap(flights)
数据.png
热度图4.png
##annot=True,把值添加进来,fmt="d",一种比较清晰的字体格式,
##默认格式是科学计数法数字太长,容易出现乱码
ax = sns.heatmap(flights, annot=True,fmt="d")
热度图5.png
##linewidths=.5 格子之间的间距
ax = sns.heatmap(flights, linewidths=.5)
热度图6.png
##设定颜色区间
ax = sns.heatmap(flights, cmap="YlGnBu")
热度图7.png
##隐藏colorbar
ax = sns.heatmap(flights, cbar=False)
热度图8.png

昨晚发现一只勤劳的小蜜蜂把seaborn官方文档大部分都学习了一边,剩余的一些部分直接转载了:
第三章 分布数据集的可视化:
https://zhuanlan.zhihu.com/p/27570774
第四章 线性关系的可视化
https://zhuanlan.zhihu.com/p/27593869
第五章 分类数据的绘制
https://zhuanlan.zhihu.com/p/27683042
第六章 绘制数据网格
https://zhuanlan.zhihu.com/p/27816821

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,802评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,109评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,683评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,458评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,452评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,505评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,901评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,550评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,763评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,556评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,629评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,330评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,898评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,897评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,140评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,807评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,339评论 2 342

推荐阅读更多精彩内容