Java泛型详解

一、泛型本质

Java 泛型(generics)是 JDK 5 中引入的一个新特性, 泛型提供了编译时类型安全检测机制,该机制允许程序员在编译时检测到非法的类型。

泛型的本质是参数化类型,即给类型指定一个参数,然后在使用时再指定此参数具体的值,那样这个类型就可以在使用时决定了。这种参数类型可以用在类、接口和方法中,分别被称为泛型类、泛型接口、泛型方法。

image.png

二、为什么使用泛型

泛型的好处是在编译的时候检查类型安全,并且所有的强制转换都是自动和隐式的,提高代码的重用率。


image.png

2.1 保证了类型的安全性

在没有泛型之前,从集合中读取到的每一个对象都必须进行类型转换,如果不小心插入了错误的类型对象,在运行时的转换处理就会出错。

比如:没有泛型的情况下使用集合:

public static void noGeneric() {
  ArrayList names = new ArrayList();
  names.add("mikechen的互联网架构");
  names.add(123); //编译正常
}

有泛型的情况下使用集合:

public static void useGeneric() {
  ArrayList<String> names = new ArrayList<>();
  names.add("mikechen的互联网架构");
  names.add(123); //编译不通过
}

有了泛型后,定义好的集合names在编译的时候add(123)就会编译不通过。

相当于告诉编译器每个集合接收的对象类型是什么,编译器在编译期就会做类型检查,告知是否插入了错误类型的对象,使得程序更加安全,增强了程序的健壮性。

2.2 消除强制转换

泛型的一个附带好处是,消除源代码中的许多强制类型转换,这使得代码更加可读,并且减少了出错机会。
还是举例说明,以下没有泛型的代码段需要强制转换:

List list = new ArrayList();
list.add("hello");
String s = (String) list.get(0);

当重写为使用泛型时,代码不需要强制转换:

List<String> list = new ArrayList<String>();
list.add("hello");
String s = list.get(0); // no cast

2.3 提升性能

避免了不必要的装箱、拆箱操作,提高程序的性能

在非泛型编程中,将筒单类型作为Object传递时会引起Boxing(装箱)和Unboxing(拆箱)操作,这两个过程都是具有很大开销的。引入泛型后,就不必进行Boxing和Unboxing操作了,所以运行效率相对较高,特别在对集合操作非常频繁的系统中,这个特点带来的性能提升更加明显。

泛型变量固定了类型,使用的时候就已经知道是值类型还是引用类型,避免了不必要的装箱、拆箱操作。

Object a=1;//由于是object类型,会自动进行装箱操作。
int b=(int)a;//强制转换,拆箱操作。这样一去一来,当次数多了以后会影响程序的运行效率。

使用泛型之后

public static T GetValue<T>(T a){
  return a;
}

public static void Main(){
  int b=GetValue<int>(1);//使用这个方法的时候已经指定了类型是int,所以不会有装箱和拆箱的操作。
}

2.4 提高了代码的重用性

这就不必说了。

三、如何使用泛型

泛型有三种使用方式,分别为:泛型类泛型接口泛型方法

3.1 泛型类

泛型类:把泛型定义在类上,在创建类的对象时指明泛型的具体类型


image.png

定义格式:

public class 类名 <泛型类型1,...> {

}

注意事项:泛型类型必须是引用类型(非基本数据类型)

定义泛型类,在类名后添加一对尖括号,并在尖括号中填写类型参数,参数可以有多个,多个参数使用逗号分隔:

public class GenericClass<ab,a,c> {}

当然,这个后面的参数类型也是有规范的,不能像上面一样随意,通常类型参数我们都使用大写的单个字母表示:
T:任意类型 type
E:集合中元素的类型 element
K:key-value形式 key
V: key-value形式 value

示例代码:泛型类

public class GenericClass<T> {
    private T value;
 
    public GenericClass(T value) {
        this.value = value;
    }
    public T getValue() {
        return value;
    }
    public void setValue(T value) {
        this.value = value;
    }
}

测试类:

GenericClass<String> name = new GenericClass<String>("mikechen的互联网架构");
System.out.println(name.getValue());
 
GenericClass<Integer> number = new GenericClass<Integer>(123);
System.out.println(number.getValue());

3.2 泛型接口

泛型接口:把泛型定义在接口上,在创建接口实现类的时候指明泛型的具体类型


image.png

定义格式:

public interface 接口名 <泛型类型1,...> {

}

示例代码:泛型接口

public interface GenericInterface<T> {
  void show(T value);
}

public class StringShowImpl implements GenericInterface<String> { 
  @Override
  public void show(String value) {
    System.out.println(value);
  }
}
 
public class NumberShowImpl implements GenericInterface<Integer> {
  @Override
  public void show(Integer value) {
    System.out.println(value);
  }
}

注意:使用泛型接口的时候,前后定义的泛型类型必须保持一致,否则会出现编译异常:

GenericInterface<String> genericInterface = new NumberShowImpl(); //编译异常

或者干脆不指定类型,那么 new 什么类型都是可以的:

GenericInterface g1 = new NumberShowImpl();
GenericInterface g2 = new StringShowImpl();

3.3 泛型方法

泛型方法,是在调用方法的时候指明泛型的具体类型 。

定义格式:


image.png

示例代码:泛型方法

/**
* @param t 传入泛型的参数
* @param <T> 泛型的类型
* @return T 返回值为T类型
* 说明:
*   1)public 与 返回值中间<T>非常重要,可以理解为声明此方法为泛型方法。
*   2)只有声明了<T>的方法才是泛型方法,泛型类中的使用了泛型的成员方法并不是泛型方法。
*   3)<T>表明该方法将使用泛型类型T,此时才可以在方法中使用泛型类型T。
*   4)与泛型类的定义一样,此处T可以随便写为任意标识,常见的如T、E等形式的参数常用于表示泛型。
*/
public <T> T genercMethod(T t){
  System.out.println(t.getClass());
  System.out.println(t);
  return t;
}

public static void main(String[] args) {
  GenericsClassDemo<String> genericString  = new GenericsClassDemo("helloGeneric"); //这里的泛型跟下面调用的泛型方法可以不一样。
  String str = genericString.genercMethod("hello");//传入的是String类型,返回的也是String类型
  Integer i = genericString.genercMethod(123);//传入的是Integer类型,返回的也是Integer类型
}

class java.lang.String
hello
 
class java.lang.Integer
123

这里可以看出,泛型方法随着我们的传入参数类型不同,他得到的类型也不同。泛型方法能使方法独立于类而产生变化。

注意要点:

  • 方法声明中定义的形参只能在该方法里使用,而接口、类声明中定义的类型形参则可以在整个接口、类中使用。
  • 当调用genercMethod()方法时,根据传入的实际对象,编译器就会判断出类型形参T所代表的实际类型。

四、泛型中KTVE的含义

果点开JDK中一些泛型类的源码,我们会看到下面这些代码:

public class ArrayList<E> extends AbstractList<E> implements List<E>, RandomAccess, Cloneable, java.io.Serializable{
...
}
public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable {
...
}

上面这些泛型类定义中的泛型参数E、K和V都是什么意思呢?其实这些参数名称是可以任意指定,就想方法的参数名一样可以任意指定,但是我们通常会起一个有意义的名称,让别人一看就知道是什么意思。泛型参数也一样,E一般是指元素,用来集合类中。

常见泛型参数名称有如下:

E: Element (在集合中使用,因为集合中存放的是元素)
T:Type(Java 类)
K: Key(键)
V: Value(值)
N: Number(数值类型)
?: 表示不确定的java类型

五、泛型的实现原理

泛型本质是将数据类型参数化,它通过擦除的方式来实现,即编译器会在编译期间「擦除」泛型语法并相应的做出一些类型转换动作。

看一个例子就应该清楚了,例如:

public class Caculate<T> {
  private T num;
}

我们定义了一个泛型类,定义了一个属性成员,该成员的类型是一个泛型类型,这个 T 具体是什么类型,我们也不知道,它只是用于限定类型的。

反编译一下这个 Caculate 类:

public class Caculate{
  public Caculate(){}
  private Object num;
}

发现编译器擦除 Caculate 类后面的两个尖括号,并且将 num 的类型定义为 Object 类型。

那么是不是所有的泛型类型都以 Object 进行擦除呢?大部分情况下,泛型类型都会以 Object 进行替换,而有一种情况则不是。那就是使用到了extends和super语法的有界类型,如:

public class Caculate<T extends String> {
private T num;
}

这种情况的泛型类型,num 会被替换为 String 而不再是 Object。

这是一个类型限定的语法,它限定 T 是 String 或者 String 的子类,也就是你构建 Caculate 实例的时候只能限定 T 为 String 或者 String 的子类,所以无论你限定 T 为什么类型,String 都是父类,不会出现类型不匹配的问题,于是可以使用 String 进行类型擦除。

实际上编译器会正常的将使用泛型的地方编译并进行类型擦除,然后返回实例。但是除此之外的是,如果构建泛型实例时使用了泛型语法,那么编译器将标记该实例并关注该实例后续所有方法的调用,每次调用前都进行安全检查,非指定类型的方法都不能调用成功。

实际上编译器不仅关注一个泛型方法的调用,它还会为某些返回值为限定的泛型类型的方法进行强制类型转换,由于类型擦除,返回值为泛型类型的方法都会擦除成 Object 类型,当这些方法被调用后,编译器会额外插入一行 checkcast 指令用于强制类型转换,这一个过程就叫做『泛型翻译』。

六、菱形语法

在 Java 7 版本以前,如果使用带泛型的接口、类定义变量,那么调用构造器创建对象时构造器的后面也必须带泛型,这显得有些多余了。例如如下两条语句:

List<String> strList = new ArrayList<String>();
Map<String, Integer> scores = new HashMap<String, Integer>();

从 Java 7 开始,Java 允许在构造器后不带完整的泛型信息,只要给出一对尖括号<>即可。Java 可以推断出尖括号里应该是什么泛型信息。
即上面两条语句可以改写为如下形式:

List<String> strList = new ArrayList<>();
Map<String, Integer> scores = new HashMap<>();

把两个尖括号并排放在一起非常像一个菱形,这种语法也就被称为菱形语法

七、泛型通配符(泛型的高阶用法)

Java泛型的通配符是用于解决泛型之间引用传递问题的特殊语法, 主要有以下三类:


image.png
//表示类型参数可以是任何类型
public class Apple<?>{}
 
//表示类型参数必须是A或者是A的子类
public class Apple<T extends A>{}
 
//表示类型参数必须是A或者是A的超类型
public class Apple<T supers A>{}
  1. 无边界的通配符(Unbounded Wildcards),就是<?>, 比如List<?>
  • 无边界的通配符的主要作用就是让泛型能够接受未知类型的数据.
  1. 固定上边界的通配符(Upper Bounded Wildcards),采用<? extends E>的形式
  • 使用固定上边界的通配符的泛型, 就能够接受指定类及其子类类型的数据。
  • 要声明使用该类通配符, 采用<? extends E>的形式, 这里的E就是该泛型的上边界。
  • 这里虽然用的是extends关键字, 却不仅限于继承了父类E的子类, 也可以代指实现了接口E的类
  1. 固定下边界的通配符(Lower Bounded Wildcards),采用<? super E>的形式
  • 使用固定下边界的通配符的泛型, 就能够接受指定类及其父类类型的数据.。
  • 要声明使用该类通配符, 采用<? super E>的形式, 这里的E就是该泛型的下边界.。

你可以为一个泛型指定上边界或下边界, 但是不能同时指定上下边界。

下面举几个列子,说明以下三个问题:

  • T和?有什么区别?
  • 什么时候使用 extends 和 super?
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 194,524评论 5 460
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 81,869评论 2 371
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 141,813评论 0 320
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,210评论 1 263
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,085评论 4 355
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,117评论 1 272
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,533评论 3 381
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,219评论 0 253
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,487评论 1 290
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,582评论 2 309
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,362评论 1 326
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,218评论 3 312
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,589评论 3 299
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 28,899评论 0 17
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,176评论 1 250
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,503评论 2 341
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 40,707评论 2 335

推荐阅读更多精彩内容