python3.6 数据分析-数据加载、存储与文件格式

1. 数据加载与存储

1.1. np.save,np.load

In [78]: a = np.arange(10)

In [79]: a
Out[79]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

In [80]: np.save('some_array',a)

In [83]: np.load('some_array.npy')
Out[83]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

1.2. 常规用 pd.read_<tab> 和data.to_<format>走遍天下,新版pandas几乎什么格式都能读了。

2. CSV 和 txt 格式

  1. 读取.csv格式的文件,直接read_csv不需要加分隔号;用read_table需要制定分隔号
  2. 关于用CLI读数据,linux人尽皆知用cat,但是windows用的是type,而且斜杠方向与linux相反
  3. csv很方便,直接read,然后选择参数,例如header,index_col

a) 例子1,csv可以用read_csv或read_table读取


# windows system 
# ex1, csv and text values

In [3]: !type ch06\ex1.csv
a,b,c,d,message
1,2,3,4,hello
5,6,7,8,world
9,10,11,12,foo

In [10]: df = pd.read_csv('ch06/ex1.csv')

In [11]: df
Out[11]:
   a   b   c   d message
0  1   2   3   4   hello
1  5   6   7   8   world
2  9  10  11  12     foo

In [12]: df1 = pd.read_table('ch06/ex1.csv')

In [13]: df1
Out[13]:
  a,b,c,d,message
0   1,2,3,4,hello
1   5,6,7,8,world
2  9,10,11,12,foo

In [14]: df1 = pd.read_table('ch06/ex1.csv',sep=',')

In [15]: df1
Out[15]:
   a   b   c   d message
0  1   2   3   4   hello
1  5   6   7   8   world
2  9  10  11  12     foo

b) 例子2,csv设置参数header,index_col

# ex2 csv and header,index_col

In [48]: pd.read_csv('ch06/ex2.csv',header=None)
Out[48]:
   0   1   2   3      4
0  1   2   3   4  hello
1  5   6   7   8  world
2  9  10  11  12    foo

In [49]: pd.read_csv('ch06/ex2.csv',names=['a','b','c','d','message'])
Out[49]:
   a   b   c   d message
0  1   2   3   4   hello
1  5   6   7   8   world
2  9  10  11  12     foo

In [53]: pd.read_csv('ch06/ex2.csv',names= names,index_col = 'message')
Out[53]:
         a   b   c   d
message
hello    1   2   3   4
world    5   6   7   8
foo      9  10  11  12

# csv_mindex.csv

In [57]: !type ch06\csv_mindex.csv
key1,key2,value1,value2
one,a,1,2
one,b,3,4
one,c,5,6
one,d,7,8
two,a,9,10
two,b,11,12
two,c,13,14
two,d,15,16

In [60]: parsed = pd.read_csv('ch06/csv_mindex.csv',index_col=['key1','key2'])

In [61]: parsed
Out[61]:
           value1  value2
key1 key2
one  a          1       2
     b          3       4
     c          5       6
     d          7       8
two  a          9      10
     b         11      12
     c         13      14
     d         15      16

c) 例子3,多个空格时使用正则式\s+

In [62]: list(open('ch06/ex3.txt'))
Out[62]:
['            A         B         C\n',
 'aaa -0.264438 -1.026059 -0.619500\n',
 'bbb  0.927272  0.302904 -0.032399\n',
 'ccc -0.264273 -0.386314 -0.217601\n',
 'ddd -0.871858 -0.348382  1.100491\n']

In [63]:

In [63]:

In [63]: result = pd.read_table('ch06/ex3.txt',sep='\s+')

In [64]: result
Out[64]:
            A         B         C
aaa -0.264438 -1.026059 -0.619500
bbb  0.927272  0.302904 -0.032399
ccc -0.264273 -0.386314 -0.217601
ddd -0.871858 -0.348382  1.100491

d) 例子4,忽略格式不对的行,处理缺失值

In [65]: !type ch06\ex4.csv
# hey!
a,b,c,d,message
# just wanted to make things more difficult for you
# who reads CSV files with computers, anyway?
1,2,3,4,hello
5,6,7,8,world
9,10,11,12,foo
In [66]:

In [66]: pd.read_csv('ch06/ex4.csv',skiprows=[0,2,3])
Out[66]:
   a   b   c   d message
0  1   2   3   4   hello
1  5   6   7   8   world
2  9  10  11  12     foo

In [67]: !type ch06\ex5.csv
something,a,b,c,d,message
one,1,2,3,4,NA
two,5,6,,8,world
three,9,10,11,12,foo

In [68]: pd.read_csv('ch06/ex5.csv',na_values='Null')
Out[68]:
  something  a   b     c   d message
0       one  1   2   3.0   4     NaN
1       two  5   6   NaN   8   world
2     three  9  10  11.0  12     foo

In [69]: setNAvaluse = {'message':['foo','NA'],'something':['two']}

In [70]: pd.read_csv('ch06/ex5.csv',na_values=setNAvaluse)
Out[70]:
  something  a   b     c   d message
0       one  1   2   3.0   4     NaN
1       NaN  5   6   NaN   8   world
2     three  9  10  11.0  12     NaN

JSON 格式

json 包,直接load就好。可以看py4e免费在线text book

XML tree

python3.6 直接有elementree可以用,数据读出来常规处理就好。同上

二进制

参考官网

7.1. struct — Interpret bytes as packed binary data

HDF5文件

这个好像是hadoop里的文件格式,适用于处理大批量文件,大数据上手继续学这部分。

In [39]: store = pd.HDFStore('mydata.h5')

In [41]: frame
Out[41]:
   a   b   c   d message
0  1   2   3   4   hello
1  5   6   7   8   world
2  9  10  11  12     foo

In [42]: store['obj1'] = frame

In [43]: store
Out[43]:
<class 'pandas.io.pytables.HDFStore'>
File path: mydata.h5
/obj1            frame        (shape->[3,5])

In [44]: store['obj1_col'] = frame['a']

In [45]: store
Out[45]:
<class 'pandas.io.pytables.HDFStore'>
File path: mydata.h5
/obj1                frame        (shape->[3,5])
/obj1_col            series       (shape->[3])

EXCEL

不用按照书里的安装啥库了,现在pandas可以直接读pd.read_excel('ch06/test.xls')

使用HTML和Web API

从网页中获取数据,暂时我只用过urllib和socket...
可以看py4e网站: Networked programs

request库好像是高级用法,待做

数据库

简单的SQL语言可以用内置的sqlite3

MongoDB

这是NoSQL数据库,还没装,迟点跟着hadoop一起做...


2018.7.2x 大数据文件格式,上手后再做。被成功安利request库处理网页。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,529评论 5 475
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,015评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,409评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,385评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,387评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,466评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,880评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,528评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,727评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,528评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,602评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,302评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,873评论 3 306
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,890评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,132评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,777评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,310评论 2 342

推荐阅读更多精彩内容