深度学习为何产生?
一直以来,在人工智能领域,我们试图达到获得大量数据、做出优秀产品和赢得广大用户三者之间的良性循环,但传统的机器学习算法表现并不够好,良性循环也未能实现。
深度学习相比于传统方法有很多优势,随着训练量的提高,传统方法遇到了瓶颈,但深度学习的效果却蓬勃发展,不断提高。
深度学习相比于传统方法的优势
随着训练量的提高,传统方法很快走到天花板,而Deep Learning的效果还能持续走高。
其实这是一个特征表达力的问题,传统方法特征表达力,不如Deep Learning的多层学习得到的更有效果的表达。举个例子,假定有一种疾病,这种疾病容易在个高且胖的人群,以及个矮且瘦的人群中易感。那么任意从给一个特征角度上看,比如肥胖,那么胖的这部分人中,得此病的概率为50%,不胖的也是50%,那么"胖"这个特征没有表达力。
Ng直观的展示了从像素级特征(表达力最弱)到edges级特征,直到object级特征。 从edges特征大家看到的这个形式,其实是深度神经网络的edges中的一个小块,就是input layer到第一个hidden layer之间的一组边(如果是RBM的话)或者是第一个hidden layer到output layer的一组边,这组边可以理解成training的成果。而hidden layer是一个sparse coding的向量,用来combine不同组的边来还原出input layer。
因此可以看到,通过深度学习的处理,无需tagged data,通过自学习的方式,就可以做到特征的表达力从像素级,提高到了 object models,多么美妙啊!
深度学习有哪些发展
Andrew Ng:
当年在斯坦福大学,我和我的团队曾经有一个想法,让机器人去识别咖啡杯。但机器人看到的东西和人完全不一样,我们会看到一个具体的杯子,但机器能看到的只有数据,这也是计算机视觉(computer vision)难点所在,那就是要搞明白这些数字代表了什么。
过去我们的研究主要集中在三个领域。第一个是计算机视觉,目的是发现物体特征,然后描绘这种特征。第二个是语音识别(speech recognition),比如对机器说:“请找到我的咖啡杯”,机器就会识别这句话的意思。第三个是文本识别,这个有助于我们更好的应用,比如机器翻译、网络搜索等。
很长一段时间,我们设计了大量program,也发了一些paper,但研究没有什么突破性进展。直到大概七年前,我和我的学生突然有一个想法:人脑中大部分感知器是一个非常简单的计算过程。
而对于人脑的研究也表明,这个“one program”的假设是有可能的。我们可以从大脑如何听、如何看开始,去了解大脑的神经元如何工作,并进而为深度学习提供理论依据。
有了这个依据,我们开始从有标记数据(tagged data)中学习,也就是有监督学习(supervised learning)。在给机器看了50000张咖啡杯图片后,我们让机器人在斯坦福计算机系办公楼里找咖啡杯,效果非常好。进一步研究后,我们认识到bigger is better,即特征越多,实验效果越好。
实际上,人类大脑如何处理图片的过程就是visual cortex寻找图片中Lines/edges的过程,而每一个visual cortex的神经元就是一个Model。基于生物学中visual cortex的工作原理,发现人脑处理的过程是:像素->边缘->对象部分->对象模型。深度学习的过程是反向的。深度学习就是找到小patch再将其进行组合,就得到了上一层的特征(feature),递归地向上学习特征( feature)。在不同对象(object)上做训练是,所得的边缘(edge)是非常相似的,但对象部分(object parts)和模型(models) 就会完全不同。
深度学习存在的问题
Ng提到,通常学生试验在10 million connections这个水平,因为再大已经超出计算的能力,但如果采用并发的方法,160000万个CPUs的情况下,可以达到1 billion connections这个水平。如果采用特制的GPU来计算,可以达到10 billion connections的水平。
这就相当于一个巨大语料切成n个部分,每个部分产生表达力强的特征,而这些表达力强的特征在一个阶段,就是那个长条哪里进行combine,也就是这个hidden layer可以很好的表达来自不同shard的特征,最后在展开各层,用不同shard上的tagged data 来进一步调整每条边的权重。
深度学习的关键
人脑中大部分感知器是一个非常简单的计算过程。但通过组合可以达到很高的理解力。但问题是如何组合,感知的过程如何从低级阶段到高级阶段,从明暗,色彩的感知,到人类喜怒哀乐的情感,整个过程的每一步可能都是naive得,但 整个认知链条的末端一定是语义的,有感情的,上升到概念的。另外,通常还有一个体会,比如看一本小说,脑海中就能自然浮现画面,可见不同神经感知器也不是完全独立的,而是彼此联系的。
深度学习的未来趋势
Andrew教授对深度学习未来的发展进行了展望:
1)将会越来越重视对无标记数据的特征学习;
2)深度学习将全面占领计算机视觉和语音识别领域;
3)向量化表示的提出将对NLP领域产生重大影响,并将对机器翻译、网页搜索和对话系统等性能提升有所帮助。总的来说,模型的规模依旧是最大的挑战。
Andrew Ng:
我认为0-2年内仍以标记数据为主导发展方向,之后的3-5年,标记数据和未标记数据将共同发展。但关于深度学习的未来更长远的发展,我认为将会更依赖于无标记的数据,因为这与人类和动物认知世界的过程更为类似。
具体地说,在计算机视觉方面,预计在6年内,我认为深度学习将会颠覆现有的所有方法。
在语音识别方面,目前还处于起步阶段,未来将会有爆发式增长。语音识别和语音合成会在近几年产生巨大的影响。语义理解方面,发展的过程将会是从单词的理解到一个句子,再到文章理解(document representation)。推荐系统和广告方面,百度做的很好,有效提高了广告表现。机器人方面,未来将会出现真正的智能机器人。
此外,就是对获取数据的创新。现在的很多研究都是基于海量数据,未来或许我们可以通过某种传感器训练摄像头来捕捉更多的数据。我甚至想和朋友在空闲的时间里,成立一个国际数据获取大会(conference of data acquisition),很遗憾,我没有这个时间。而未来的挑战将会集中在规模化和算法这两方面。
转载请注明作者Jason Ding及其出处
Github主页(http://jasonding1354.github.io/)
CSDN博客(http://blog.csdn.net/jasonding1354)
简书主页(http://www.jianshu.com/users/2bd9b48f6ea8/latest_articles)