Redis大key 问题分析解决

背景
双十一大促期间, 收到客服反馈通知,说 APP 领券接口缓慢。找到一个case,通过调用链路发现,是操作redis 缓慢,并且还搜到一些redis 异常。

最后定位到原因:是发券场景下拿redis 做了一个缓存券批次的操作,记录用户当天领取的所有券批次
发券场景: key = userId, value = 券批次ID 列表, 而redis 查询发现多了许多大key,体现在 一个用户领取的几千甚至上万张优惠券,导致Redis 查询缓慢,甚至异常。至于为何有的用户会领取这么多优惠券呢。联系风控发现,这些个用户是来薅羊毛的,但是风控没有拦截到,导致服务这边出现异常。

虽说最终原因不是我的问题,但是Redis 大 key 问题还是比较有意思的,下面我们就来一起认识下 大 key 问题对 Redis 的影响。

什么是大key
所谓的大key问题是某个key的value比较大,所以本质上是大value问题。key往往是程序可以自行设置的,value往往不受程序控制,因此可能导致value很大。

设想一种场景:

在线音乐app中,某个歌单有很多用户收藏,假如有这样的数据结构:


image.png

redis的key是歌单ID,redis的value是个list,list包含了用户ID , 用户可能很多,就导致list长度不可控.

大key有什么影响
我们都知道,redis的一个典型特征就是:核心工作线程是单线程。
单线程中请求任务的处理是串行的,前面完不成,后面处理不了,同时也导致分布式架构中内存数据和CPU的不平衡。

执行大key命令的客户端本身,耗时明显增加,甚至超时
执行大key相关读取或者删除操作时,会严重占用带宽和CPU,影响其他客户端
大key本身的存储带来分布式系统中分片数据不平衡,CPU使用率也不平衡
大key有时候也是热key,读取操作频繁,影响面会很大
执行大key删除时,在低版本redis中可能阻塞线程
这样看来大key的影响还是很明显的,最典型的就是阻塞线程,并发量下降,导致客户端超时,服务端业务成功率下降。

大key是如何产生的
大key的产生往往是业务方设计不合理,没有预见vaule的动态增长问题:

一直往value塞数据,没有删除机制,迟早要爆炸
数据没有合理做分片,将大key变成小key
如何找到大key
增加内存&流量&超时等指标监控
由于大key的value很大,执行读取时可能阻塞线程,这样Redis整体的qps会下降,并且客户端超时会增加,网络带宽会上涨,配置这些报警可以让我们发现大key的存在。

bigkeys命令
使用bigkeys命令以遍历的方式分析Redis实例中的所有Key,并返回整体统计信息与每个数据类型中Top1的大Key


image.png

redis-rdb-tools
使用redis-rdb-tools离线分析工具来扫描RDB持久化文件,虽然实时性略差,但是完全离线对性能无影响。

redis-rdb-tools是由Python写的用来分析Redis的rdb快照文件用的工具,它可以把rdb快照文件生成json文件或者生成报表用来分析Redis的使用详情。

集成化可视化工具
基于某些公有云或者公司内部架构的redis一般都会有可视化的页面和分析工具,来帮助我们定位大key,当然页面底层也可能是基于bigkeys或者rdb文件离线分析的结果。

image.png

如何解决大key问题
根据大key的实际用途可以分为两种情况:可删除和不可删除。

可删除


image.png

如果发现某些大key并非热key就可以在DB中查询使用,则可以在Redis中删掉:

当Redis版本大于4.0时,可使用UNLINK命令安全地删除大Key,该命令能够以非阻塞的方式,逐步地清理传入的Key。
Redis UNLINK 命令类似与 DEL 命令,表示删除指定的 key,如果指定 key 不存在,命令则忽略。
UNLINK 命令不同与 DEL 命令在于它是异步执行的,因此它不会阻塞。
UNLINK 命令是非阻塞删除,非阻塞删除简言之,就是将删除操作放到另外一个线程去处理。

当Redis版本小于4.0时,避免使用阻塞式命令KEYS,而是建议通过SCAN命令执行增量迭代扫描key,然后判断进行删除。
Redis Scan 命令用于迭代数据库中的数据库键。
SCAN 命令是一个基于游标的迭代器,每次被调用之后, 都会向用户返回一个新的游标, 用户在下次迭代时需要使用这个新游标作为 SCAN 命令的游标参数, 以此来延续之前的迭代过程。

压缩和拆分key
当vaule是string时,比较难拆分,则使用序列化、压缩算法将key的大小控制在合理范围内,但是序列化和反序列化都会带来更多时间上的消耗。

当value是string,压缩之后仍然是大key,则需要进行拆分,一个大key分为不同的部分,记录每个部分的key,使用multiget等操作实现事务读取。

当value是list/set等集合类型时,根据预估的数据规模来进行分片,不同的元素计算后分到不同的片。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342

推荐阅读更多精彩内容