除了PV、UV,产品经理还应该知道这三大数据指标

本文来自于产品100(http://www.chanpin100.com/)

【文章摘要】从产品经理角度来说,我们需要知道屏幕前的人是怎么使用我们的产品的,洞悉用户行为背后的规律,发掘用户价值

除了PV、UV,产品经理还应该知道这三大数据指标

一、PM必须要知道的三大数据指标

作者技术出身,从数据组成的角度来说,一个完整的闭环数据源包括三部分:

用户行为数据;

服务端日志数据;

实际交易数据。

其中,实际交易数据会经常被存储在离线数据库中,并通过 ETL 来获取分析。而用户行为数据和服务端日志数据很多时候都是近似的。最近几年发展最快的是前端,每个月都会有新的东西出来;整体趋势是往单页应用发展,追求更好的用户体验。

所以从产品经理角度来说,我们需要知道屏幕前的人是怎么使用我们的产品的,洞悉用户行为背后的规律,发掘用户价值。

作者去年开始新的创业历程,分析总结了几百家企业的数据分析需求,大致可以分为三个数据指标或者场景:渠道、转化和留存。

1.1渠道衡量和优化

很多产品经理或者运营人员都有过这样的经历:公司做了一次线上促销,发表了一篇软文,买了很多搜索关键词(SEM),但是如何衡量这些活动的效果。你是否知道用户是从那几个渠道来访问你的网页或者下载你的APP;不同渠道来的用户有哪些差异;如何用最少的钱

在不同的渠道上办最有效的事情。

1.2提升转化率

产品经理最常见(没有之一)的一个问题:注册!!!

用户的注册流程是否顺畅?激活步骤是否合理?运营拉过来的流量,是否转化为注册用户。再细一点,每一步的转化率是多少?没转化的用户去哪里了?如何优化注册或者购买的流程?

1.3提高留存率

先举几个硅谷前沿公司的案例。

社交网络公司LinkedIn(领英)发现:在第一周增加5个社交好友后,这类用户的留存度非常高。Dropbox(一家云存储公司)发现在第一周安装两个以上操作系统的用户留存度非常高。Facebook和Twitter也通过让新用户添加好友的方式提升用户的留存。这里面的5(个社交好友)、2(个操作系统)等等就是这些产品留存的魔法数字。

作为产品经理,你肯定希望用户留下来,那么你是否知道你产品留存的魔法数字呢?对于提升用户留存,你是否有好的办法?

二. PM需要警惕的虚荣指标

产品经理做数据分析,归根结底都是为了用户服务的。所以我们需要建立一套基于用户行为的数据分析体系,了解用户是谁?用户都做了什么?不同用户之间的差异等等。产品经理只有明白了“是什么”,才能搞懂“为什么”,进而优化产品设计。

数据分析是一个长时间优化的过程,需要我们持续监测各项指标变化。在这个过程中,产品经理需要警惕一类虚荣指标:即PV、UV等概览性指标。这类指标就算很大,也没法很好的指导我们具体的工作,还容易给人带来误导。

而我们需要关注的用户行为数据指标,包括我们上面介绍的用户获取(渠道)、用户激活(激活)、用户留存(留存)等等。只有了解到这些指标,才能优化我们的产品设计; 所以这些指标也叫做 Actionable Metric(可执行指标),这也是用户行为数据的魅力。

三、案例解释:用户行为数据分析的基本流程

确定了具体的数据指标后,我们开始分析用户行为数据,那么该如何操作呢?我们以一个产品经理常见的场景——网页注册转化率过低——为例,对用户行为数据分析的流程进行详细介绍。

第一步明确你的分析场景,确定具体的目标。在这个案例中,网页的注册转化率过低,那么我们的目标就是提升注册转化率;为例提升注册转化率,我们需要知道到底是哪一步挡住了用户注册。

第二步规划一下你需要那些数据来支持你的分析。比如对于之前的目标,我们需要拆解从进入注册页面到完成注册的每一个步骤的数据,每一次输入的数据,同时,完成或者未成为这些步骤的所有用户的特征数据。

第三步让工程师帮忙采集数据。一般这个时候,产品经理和工程师们就开始进入撕X节奏了,理由可能是:太忙,你这个数据收集起来有意义吗?一定需要这些数据嘛,你再想想?好的,提个工单,排期到下下下个月。收集每一个注册页面的数据,需要工程师在每一个注

册页面或者按钮下面埋点来收集说句。同时还要调取不同类别客户的基本属性(IP来源、电脑系统、屏幕大小、浏览器版本、客户会员登记、客户职务等等各种可能涉及到的信息)数据,怪不得程序员嫌烦。(作为工程师,作者深有体会)

第四步是评估和分析数据。这一步和产品经理的数据分析能力息息相关,懂数据分析的PM可以自行完成这些工作;不懂数据分析的PM可能要求数据分析师帮忙了。对于注册转化率过低的案例,一般是做个转化环节的漏斗分析,通过不同环节的漏斗大小来分析问题出在那里。

第五步给出优化方案。通过数据分析来发现问题,然后提出解决问题的方案。例如发现某一个页面填写的注册信息过多,导致很多用户放弃,那就需要简化这个页面。

第六步就是确定方案的负责人。如果是BUG,产品经理可能要和程序员开始新一轮的交战。如果是设计的问题,产品需要和交互等交流,交流完再和程序员撕。

第七步评估实施新方案的效果,并持续优化。这是一个不断优化的过程,需要日复一日,持续监测和改进。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,723评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,080评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,604评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,440评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,431评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,499评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,893评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,541评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,751评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,547评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,619评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,320评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,890评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,896评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,137评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,796评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,335评论 2 342

推荐阅读更多精彩内容