导语:影响关系研究是所有研究中最为常见的。我们都知道当Y是定量数据时,线性回归可以用来分析影响关系。如果现在想对某件事情发生的概率进行预估,比如一件衣服的是否有人想购买?这里的Y是“是否愿意购买”,属于分类数据,所以不能使用回归分析。
如果Y为定类数据,研究影响关系,正确做法是选择Logistic回归分析。
一、概念
Logistic回归分析也用于研究影响关系,即X对于Y的影响情况。Y为定量数据,X可以是定量数据或定类数据。
Logistic回归和线性回归最大的区别在于,Y的数据类型。线性回归分析的因变量Y属于定量数据,而Logistic回归分析的因变量Y属于分类数据。(还不理解什么是数据类型?戳链接:基本概念)
二、 Logistic回归分类
Logistic回归在进一步细分,又可分为二元Logit(Logistic)回归、多分类Logit(Logistic)回归,有序Logit(Logistic)回归。
如果Y值仅两个选项,分别是有和无之类的分类数据,选择二元Logistic回归分析。Y值的选项有多个,并且选项之间没有大小对比关系,则可以使用多元Logistic回归分析。Y值的选项有多个,并且选项之间可以对比大小关系,选项具有对比意义,应该使用多元有序Logistic回归分析。
三、Logistic回归的使用场景
Logistic回归分析可用于估计某个事件发生的可能性,也可分析某个问题的影响因素有哪些。
医学研究中,Logistic回归常用于对某种疾病的危险因素分析。像是分析年龄、吸烟、饮酒、饮食情况等是否属于2型糖尿病的危险因素。
问卷研究中,Logistic回归常被用在分析非量表题上,像是将样本基本背景信息作为X,购买意愿作为Y,分析性别、年龄、家庭条件是否会影响购买意愿。
其中,二元Logistic回归分析的使用频率最高,使用简单方便容易理解和描述,下面以二元Logistic回归为例,对操作步骤,及结果解读进行说明。
四、案例应用
(1)背景
有一份关于大学生对某商品购买意愿的调查问卷。共收集到468份问卷数据,研究者要将“性别”、“年龄”、“专业”、“月生活费”四个变量作为潜在的影响因素,购买意愿为Y,做二元Logistic回归分析。
这些自变量中,性别和文化程度是定类数据,需要设定对照参考项,这里将女生和医学专业作为对比参照项。年龄和月收入为定量数据直接放入。
(2)分析步骤
①数据预处理
首先将定类数据做哑变量处理,SPSSAU要求Logistic回归Y值只可为1和0,不能取其他数字。所以在正式分析前,还要处理下Y值。操作示意图如下:
②二元Logistic回归分析
将全部分析项(设成哑变量的要少放一项)放入分析框内,点击开始二元Logit回归。
(3)结果分析
SPSSAU共输出四个结果表格,分别是基本汇总表、似然比检验表、二元Logit回归分析表、预测准确率表。
①基础汇总表
表1为基础汇总表,主要用来汇总数据信息,查看Y值的分布比例以及是否有缺失数据。如果缺失数据过多,或者Y值分布非常不均匀,可能会导致模型质量较差。
从上表可知,将性别, 年龄, 专业, 月生活费作为自变量,而将new_购买意愿作为因变量进行二元Logit回归分析,从上表可以看出,总共有468个样本参加分析,并且没有缺失数据。
②似然比检验表
表2为模型似然比检验结果,用于分析模型整体是否有效。主要关注P值,AIC和BIC值用于多次分析时的对比;两个值越低越好;如果多次进行分析,可对比此两个值的变化情况,说明模型构建的优化过程。
从上表可知:此处模型检验的原定假设为:是否放入自变量(性别_男, 理工类, 文科类, 艺体类, 年龄, 月生活费)两种情况时模型质量均一样;这里P值小于0.05,因而说明拒绝原定假设,即说明本次构建模型时,放入的自变量具有有效性,本次模型构建有意义。
③回归分析汇总表
表3为二元Logistic回归分析结果,用于分析模型整体情况,以及每个X对Y的影响情况(显著性、影响程度等)。
其中主要关注P值,回归系数,OR值和R Pseudo R²。
P值:判断X对Y是否呈现出显著性的影响,P<0.05说明X会对Y产生影响关系。
回归系数:回归系数值,当P小于0.05时有意义。
OR值:优势比,值与1作比较,越接近1影响程度越小,反之影响程度越大。
Pseudo R²:用于说明模型整体情况。
从上表可知,模型伪R平方值(Pseudo R平方)为0.089,意味所有变量能解释购买意愿的8.9%变化原因。根据P值及OR值取值可知,理工类、艺体类、年龄对购买意愿有显著性的正向影响,意味着相比医学专业学生,理工、艺体专业学生的购买意愿更大;以及购买意愿随着年龄增长而提高。
④模型预测准确率汇总表
表4为二元Logit回归预测准确率表,用于在分析后对模型质量进行判断。
从上表可知:研究模型的整体预测准确率为77.14%,模型拟合情况比较糟糕。当真实值为不购买时,预测错误率为79.51%;另外当真实值为购买时,预测错误率为2.89%。
如果实际研究中,数据预测准确率很低,比如低于85%,此时可以考虑删除部分X,也或者对X进行一些数据编码组合处理,多次进行二元Logit回归分析进行对比结果,选出最优的模型结果。这里就不再继续说明。
五、其他说明
1、注意因变量的赋值和哑变量参考项的选择。Y对应的数字一定只能为0和1;如果不是,可以使用‘数据编码’功能设置。哑变量选择不同的选项作为参考项,其结果意义不相同。
2、如果X的个数非常多(比如超过10个),需要先进行甄别选择出有意义的X,比如使用方差分析或者卡方分析,选出X与Y有显著差异的X放入二元logit回归模型中。
登录SPSSAU官网体验在线数据分析