索引优化

就像是一本书的目录一样,Mysql提供了索引来提高我们对于数据的查询速度,而如何用好它,就需要了解它的一些规则和原理。

测试数据

索引的类型

索引有很多种类型,可以为不同的场景提供更好的性能,索引是在存储引擎实现的而不是服务层,所以即使是同一种索引类型在不同的引擎中的实现可能也会有差异。

常见的索引类别:

  1. B-Tree 索引,最常用的索引类型,现在默认都是用这个
  2. 哈希索引,通过对行数据进行哈希处理的一种索引类型
  3. 空间数据索引,用于地理位置的索引
  4. 全文索引,用于关键字搜索的索引

索引的优点

  1. 索引大大减少了Mysql服务器层需要扫描的的数据量
  2. 索引可以帮助服务器避免排序和使用临时表
  3. 索引可以将随机I/O变为顺序I/O

高性能的索引策略

想要正确的创建和使用索引,我们需要先知道索引的一些高性能策略

独立的列

"独立的列"是指索引列不能是表达式的一部分或者函数的参数。

下图为测试结果:


独立的列

通过上图,我们知道id为索引列,当它是表达式的一部分时,没有使用到索引。但是当它单独在比较符号的一侧是,使用了索引。性能上也有明显的差距。

前缀索引和索引选择性

有时候我们需要索引很长的字符列,这会让索引变得大而且慢,除了将字符列的数据进行哈希之外,我们还可以使用前缀索引来进行优化。

前缀索引是指取整个字符列的前面部分数据来作为索引,这样可以减低索引的空间大小,从而提高的索引效率。但是取字符列的前面几位是一个问题,如果位数太少,那么就会降低索引的选择性。索引的选择性是指:不重复的索引值(也称为基数,cardinality)和数据表的记录总数的比值,选择性越高则查询效率越高。当基数/记录总数=1时,该索引的选择性最好,例如主键。

在不同的场景下,因为存的不同的数据,所以需要选择的位数也不同,所以需要我们自己通过测试来选择使用的位数应该是多少,可以通过下面的sql语句来进行计算。

select count(distinct left(字符列,位数))/count(*) from 表名;

也可以通过下面的语句,在不同位数之间进行比较,当发现随着位数的提升,但是选择性没有明显增加时,这个位数可能就比较适合改字符列了。

select 
count(distinct left(字符列,1))/count(*),
count(distinct left(字符列,2))/count(*),
count(distinct left(字符列,3))/count(*),
count(distinct left(字符列,4))/count(*) 
from 表名;

下面我将根据《高性能Mysql》书中例子进行演示

完整字符列的选择性:

完整字符列的选择性

不同位数字符列的选择性:

不同位数字符列的选择性

通过上面两张图的对比我们可以知道,当位数到6的时候,选择性的提升幅度已经很微小了,所以这时候我们就可以在city字段上创建长度为6的前缀索引:

alter table city_demo add key(city(6));

但是我们不能通过前缀索引进行order by,下图并没有使用到索引


前缀索引排序

避免为各个列建立单独索引

在Mysql的最新版本中,Mysql能够同时使用单独列索引,并将结果进行算法合并,也将这个称为索引合并策略。这种算法有三种变种: OR条件的联合(union),AND条件的相交(intersection),组合前面两种情况的联合及相交)。

union

索引合并策略通常会消耗大量的cpu和内存资源,而这些消耗比较难通过mysql自身提供的工具进行监控,只能通过针对系统或者进程的监控程序才能知道。

选择合适的索引列顺序

不同类型的索引,它的存储结构是不一样的,限制也不一样,所以也决定了我们在定义索引时,需要选择合适的索引列顺序,才能真正的将索引的功能发挥出来,下面主要介绍B-Tree。

B-Tree限制

  1. 如果不是按照索引的最左列开始查询,则无法使用索引
  2. 不能跳过索引的列
  3. 如果查询中有某个列的范围查询,则其右边所有列都无法使用索引优化查找。
  4. 只有当索引的列顺序和order by子句的顺序完全一致,并且所有列的排序方向(倒序或正序)都一样时,才能使用索引来对结果进行排序。

通过这些B-Tree的限制应该能明白,定义索引列的顺序决定了你将如何使用索引。而这些规则试用于所有涉及索引的操作,例如基本查找、where子句、order by子句等

表结构和索引定义为:


索引定义

下面我们将主要使用rental_date这个索引进行举例:

例子1:

例子1

索引rental_date包含了rental_dateinventory_idcustomer_id字段,在第一条语句中,按我们正常的理解来说,应该使用rental_date这个索引才对,但是并没有,因为该索引的最左列为rental_date,但是在where语句中,并没有该字段,所以不会使用rental_date这个索引。而第二条语句就符合索引的最左列的规则。

例子2:

例子2

这里将and换成or,结果并没有使用rental_date索引了,而是使用了上面提到的索引合并策略。我们自己细想一下,这样是合理的,因为B-Tree是一棵树,他只能只能先匹配最左字段,然后再匹配下一个字段。但是or要求的是rental_dateinventory_id一起找,这样单个B-Tree索引是无法完成这样的工作的。只能使用索引合并策略了,所以在用or的时候,可能需要注意下索引合并策略可能引起的一些问题。

例子3:

例子3

当语句的查询结果和搜索条件以及排序条件与索引项匹配,那么可以直接通过索引进行排序

例子4:

例子4

在这个例子使用的索引是rental_date,虽然order by只用到inventory_id,但是因为前面where子句中rental_date是一个常量条件,所以也可以使用相应的索引进行排序。

例子5:

例子5

这个例子中将inventory_id换成customer_id,还是使用了rental_date索引,但是并没有使用它进行排序,因为这条语句违反不能跳过索引的列这个规则。

例子6:


例子6

这个例子中两种排序字段的排序方向不一致,所以无法使用索引进行排序。

例子7:


例子7

在这个例子中where子句使用了范围查询,所以导致了无法使用索引进行排序

冗余和重复索引

Mysql允许在相同列上创建多个索引,通过上面的那些例子中就能发现一些字段存在于不同的索引中。如果一个索引是另一个索引的最左前缀,那么这个索引就冗余索引,这样的索引是没有什么意义的。过多的索引会导致数据库在修改表数据时变慢,并且增加资源的占用。通过上面的例子也可以发现,索引太多也会提升使用索引的复杂度。

索引和锁

下面有两条语句

begin;
select actor_id from actor where actor_id < 5 and actor_id != 1 for update;
begin;
select actor_id from actor where actor_id=1 for update;

按照预期来说,上面那条语句应该只会锁2-4行的数据,那么下面那条语句应该不会阻塞,但是在我当前的版本,还是出现了阻塞。原因在actor_id < 5是一个索引范围查询, 导致InnoDB只会锁定actor_id<5的行,而不会执行后面的条件,所以导致actor_id != 1是在服务层通过where进行处理的。

例子8

通过上面的实例也能知道,这条语句先用索引过滤出<5的数据,然后在服务层用where进行二次过滤,在索引层会将对应的行锁住,导致第二条语句在执行被阻塞。

结尾

大部分人都知道当Mysql查询性能慢时,可以通过加索引的方式来提高性能。但是如何正确使用索引却并没有想象的那么简单,需要考虑未来会如何使用,然后定义相应的索引,也需要对查询语句进行修改来保证正确能使用相应的索引,也需要随着业务的发展,数据的变化,对索引进行维护来保证索引的高性能。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,271评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,275评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,151评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,550评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,553评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,559评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,924评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,580评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,826评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,578评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,661评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,363评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,940评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,926评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,156评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,872评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,391评论 2 342

推荐阅读更多精彩内容