【R语言】KO富集分析

前面小编给大家整理汇总了目前生信交流平台上发布过的所有与GO和KEGG富集分析相关的微信文章。

【推文汇总】GO和KEGG富集分析及可视化

今天我们继续来聊功能富集分析,KO富集分析。KO是KEGG ontology的缩写。KO数据库(https://www.genome.jp/kegg/ko.html)中的每一条记录用一个唯一的KO号进行标识。例如ko05200代表的是pathway in cancerhttps://www.genome.jp/pathway/ko05200

看上去是不是跟人的pathway in cancer很相似,KO通路里面的每一个节点用一个唯一的K开头的ID号来标识,表示一个蛋白。


KO数据库基于同源基因具有相似功能的假设,把基因的功能进行了扩充。对于某个物种中功能研究的很清楚的基因,在不同的物种间搜寻该基因的同源基因,将这些同源基因定义为一个orthology, 用该基因的功能作为该orthology 的功能。这样就将对于不同物种基因功能的研究都利用起来,提供了一个全面的研究基因功能的数据库。

那么如果我们手上有一个K开头ID的列表,怎么对其进行富集分析,找到显著富集的通路呢?其实还是很简单的,还是用前面KEGG富集分析用到的clusterProfiler包进行分析

KEGG富集分析—柱形图,气泡图,通路图

【R语言】circleplot展示KEGG富集分析结果

R绘制KEGG富集弦图

【R】气泡图和柱形图展示挑选的KEGG通路

library("clusterProfiler")
# 导入KOID
KO_list=read.csv("KO_list.csv")[[1]]
#进行富集分析
result1=enrichKEGG(KO_list,
                   organism = "ko", #物种选择ko
                   pvalueCutoff = 0.05,  #p值cutoff
                   pAdjustMethod = "BH", #FDR矫正p值
                   qvalueCutoff = 0.2   #q值cutoff
                   )
#保存富集分析结果
write.csv(file="KO_enrichment_result1.csv",data.frame(result1),row.names=F)

# 绘制条形图
barplot(result1)
# 绘制气泡图
dotplot(result1)

获取KO_list.csv文件

富集分析结果表


富集分析柱形图


富集分析气泡图


最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,324评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,303评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,192评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,555评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,569评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,566评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,927评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,583评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,827评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,590评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,669评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,365评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,941评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,928评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,159评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,880评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,399评论 2 342

推荐阅读更多精彩内容