基于Hacker News的内容热度推荐算法

前言

近期公司产品需要做一个内容推荐的功能,但限于人员和能力有限,经过调研,确定了一个简单相对我们可以实现的方案。
一篇文章的产生,随着用户浏览、点赞、分享、收藏、评论,热度逐渐攀升,进入榜单到推荐页面,但随着时间的推移,这篇文章也不能永久的霸占榜单,让后面新产生的文章没有机会到推荐页,因此也就有了时间衰减的因素,从而可以让榜单能够动态的变化,除了上面基本的原理以外,还需要人为干预因素,通过加权或者降权的方式来影响排名。

因子

  1. 用户活跃度(以积分的形式)
  2. 浏览量
  3. 点赞数
  4. 收藏数
  5. 评论数
  6. 分享数
  7. 时间衰减
  8. 平台编辑推荐(人为因素介入干预)

基本原理

推荐指数/热度 = 初始热度 + 互动热度 - 随时间衰减的热度 +/- 权重

初始热度 Hinit

与最后的推荐指数呈正相关(注意不是成正比),影响其的因素有:

  • 创作者:暂时以用户活跃度来界定
  • 内容属性:以篇幅、类别来区分
互动热度 Hinteract

与最后的推荐指数呈正相关(注意不是成正比),用户行为数据是决定一篇文章是否热门的重要因素,通过对这些数据评级来进行调整行为分:

比如: 浏览+1分,点赞+3分,评论+8分,收藏+10分,分享+15分。

时间衰减 Htime

与最后的推荐指数呈负相关(注意不是成反比)

大部分内容属于一次性消费品,用户看过也就过了,若推荐榜单总是那么几条, 可能很快就觉得乏味 ,从而转向别的产品。所以我们自然希望内容能不断更新,而若只看初始热度+互动热度,那么后来者必定很难超越前者。

所以还必须考虑一个因素就是时间衰减,通常这个也不是线性衰减,往往是一个指数函数:即过了一定时间后,持续衰减,热度直到无限趋于0

权重 Hweight

运营或编辑人为干预来调整权重也很重要,毕竟算法是死的,人是活的,虽然大部分都遵循这样一个规律,但也不排除偶然或者极端情况,比如恶意刷榜,这时候就需要人为的干预

图形曲线:

image-20191029102231667.png

总结公式

H = \frac{H_{init} + H{interact}} {(H{time} + 2)^{G}} + H_{weight}

参数解释:

Hinit : 初始热度值,可以以用户活跃度来衡量,比如以积分的形式,积分积累的途径有:

  1. 发文章
  2. 发笔记
  3. 发动态
  4. 提问题
  5. 回答问题
  6. 评论
  7. 系统、平台编辑推荐

在其他条件一定的情况下,初始热度越高,其最终热度也就越高

Hinteract:互动热度值,根据用户行为数据来衡量,参考点有以下几项:

  1. 浏览量
  2. 点赞量
  3. 评论量
  4. 收藏量
  5. 分享量

在其他条件一定的情况下,互动热度越高,其最终热度也就越高

Htime:时间衰减因子, 加2是为了防止最新发表的会导致分母过小 ,这个值可调,在前期平台人数较少时调整大一些,在后期人数增长起来后,可以调整的小一些,比如,因为用户对平台资源有一个消化时间。并不是一发出来就有数据的。

G:重力因子,它决定了热度随时间下降的速度,前期平台人员较少时,相对应得发的资源也会比较少,这时可以把G调小一点,减缓时间推移对热度下降的影响,后期平台人员增多时,相对应的资源也会增加,这时可以把G调大一点,加速时间推移对热度下降的影响。比如:1.2-1.8

Hweight: 加减权重,初始值可以为0,在某些偶然或者极端情况下需要人为干预的时候,可以动态调整其值,使其能够及时的控制其热度。

反作弊

  1. 可以通过权重来干预
  2. 可以制定社区规则来动态调整Hinit

参考

  1. Hacker News 帖子热度排序算法
  2. 掘金文章内容热度排序算法
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,230评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,261评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,089评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,542评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,542评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,544评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,922评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,578评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,816评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,576评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,658评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,359评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,937评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,920评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,156评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,859评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,381评论 2 342

推荐阅读更多精彩内容