Kafka Producer Consumer

Producer API

org.apache.kafka.clients.producer.KafkaProducer

如果想学习Java工程化、高性能及分布式、深入浅出。微服务、Spring,MyBatis,Netty源码分析的朋友可以加我的Java高级交流:854630135,群里有阿里大牛直播讲解技术,以及Java大型互联网技术的视频免费分享给大家。

1props.put("bootstrap.servers","192.168.1.128:9092");2props.put("acks","all");3props.put("retries",0);4props.put("batch.size",16384);5props.put("linger.ms",1);6props.put("buffer.memory",33554432);7props.put("key.serializer","org.apache.kafka.common.serialization.StringSerializer");8props.put("value.serializer","org.apache.kafka.common.serialization.StringSerializer");910Producer producer = new KafkaProducer(props);11for (int i =0; i <10; i++) {12producer.send(new ProducerRecord("foo", Integer.toString(i), Integer.toString(i)), new Callback() {13@Override14public void onCompletion(RecordMetadata recordMetadata, Exception e) {15if (null != e) {16e.printStackTrace();17}else {18System.out.println("callback: "+ recordMetadata.topic() +" "+ recordMetadata.offset());19}20}21});22}23producer.close();

producer由一个缓冲池组成,这个缓冲池中维护着那些还没有被传送到服务器上的记录,而且有一个后台的I/O线程负责将这些记录转换为请求并将其传送到集群上去。

send()方法是异步的。当调用它以后就把记录放到buffer中并立即返回。这就允许生产者批量的发送记录。

acks配置项控制的是完成的标准,即什么样的请求被认为是完成了的。本例中其值设置的是"all"表示客户端会等待直到所有记录完全被提交,这是最慢的一种方式也是持久化最好的一种方式。

如果请求失败了,生产者可以自动重试。因为这里我们设置retries为0,所以它不重试。

生产者对每个分区都维护了一个buffers,其中放的是未被发送的记录。这些buffers的大小是通过batch.size配置项来控制的。

默认情况下,即使一个buffer还有未使用的空间(PS:buffer没满)也会立即发送。如果你想要减少请求的次数,你可以设置linger.ms为一个大于0的数。这个指令将告诉生产者在发送请求之前先等待多少毫秒,以希望能有更多的记录到达好填满buffer。在本例中,我们设置的是1毫秒,表示我们的请求将会延迟1毫秒发送,这样做是为了等待更多的记录到达,1毫秒之后即使buffer没有被填满,请求也会发送。(PS:稍微解释一下这段话,producer调用send()方法只是将记录放到buffer中,然后由一个后台线程将buffer中的记录传送到服务器上。这里所说的请求指的是从buffer到服务器。默认情况下记录被放到buffer以后立即被发送到服务器,为了减少请求服务器的次数,可以通过设置linger.ms,这个配置项表示等多少毫秒以后再发送,这样做是希望每次请求可以发送更多的记录,以此减少请求次数)

如果想学习Java工程化、高性能及分布式、深入浅出。微服务、Spring,MyBatis,Netty源码分析的朋友可以加我的Java高级交流:854630135,群里有阿里大牛直播讲解技术,以及Java大型互联网技术的视频免费分享给大家。

buffer.memory控制的是总的buffer内存数量

key.serializer 和 value.serializer表示怎样将key和value对象转成字节

从kafka 0.11开始,KafkaProducer支持两种模型:the idempotent producer and the transactional producer(幂等producer和事务producer)。幂等producer强调的是至少一次精确的投递。事务producer允许应用程序原子的发送消息到多个分区或者主题。

为了启用幂等性,必须将enable.idempotence这个配置的值设为true。如果你这样设置了,那么retries默认是Integer.MAX_VALUE,并且acks默认是all。为了利用幂等producer的优势,请避免应用程序级别的重新发送。

为了使用事务producer,你必须配置transactional.id。如果transactional.id被设置,幂等性自动被启用。

1Properties props = new Properties();2props.put("bootstrap.servers","192.168.1.128:9092");3props.put("transactional.id","my-transactional-id");45Producer producer = new KafkaProducer(props, new StringSerializer(), new StringSerializer());67producer.initTransactions();89try {10producer.beginTransaction();1112for (int i =11; i <20; i++) {13producer.send(new ProducerRecord("bar", Integer.toString(i), Integer.toString(i)));14}15// This method will flush any unsent records before actually committing the transaction16producer.commitTransaction();17} catch (ProducerFencedException | OutOfOrderSequenceException | AuthorizationException e) {18producer.close();19} catch (KafkaException e) {20// By calling producer.abortTransaction() upon receiving a KafkaException we can ensure21// that any successful writes are marked as aborted, hence keeping the transactional guarantees.22producer.abortTransaction();23}2425producer.close();

如果想学习Java工程化、高性能及分布式、深入浅出。微服务、Spring,MyBatis,Netty源码分析的朋友可以加我的Java高级交流:854630135,群里有阿里大牛直播讲解技术,以及Java大型互联网技术的视频免费分享给大家。

Consumer API

org.apache.kafka.clients.consumer.KafkaConsumer

Offsets and Consumer Position

对于分区中的每条记录,kafka维护一个数值偏移量。这个偏移量是分区中一条记录的唯一标识,同时也是消费者在分区中的位置。例如,一个消费者在分区中的位置是5,表示它已经消费了偏移量从0到4的记录,并且接下来它将消费偏移量为5的记录。相对于消费者用户来说,这里实际上有两个位置的概念。

消费者的position表示下一条将要消费的记录的offset。每次消费者通过调用poll(long)接收消息的时候这个position会自动增加。

committed position表示已经被存储的最后一个偏移量。消费者可以自动的周期性提交offsets,也可以通过调用提交API(e.g. commitSync and commitAsync)手动的提交position。

Consumer Groups and Topic Subscriptions

Kafka用"consumer groups"(消费者组)的概念来允许一组进程分开处理和消费记录。这些处理在同一个机器上进行,也可以在不同的机器上。同一个消费者组中的消费者实例有相同的group.id

组中的每个消费者可以动态设置它们想要订阅的主题列表。Kafka给每个订阅的消费者组都投递一份消息。这归功于消费者组中所有成员之间的均衡分区,以至于每个分区都可以被指定到组中精确的一个消费者。假设一个主题有4个分区,一个组中有2个消费者,那么每个消费者将处理2个分区。

消费者组中的成员是动态维护的:如果一个消费者处理失败了,那么分配给它的分区将会被重新分给组中其它消费者。

在概念上,你可以把一个消费者组想象成一个单个的逻辑订阅者,并且每个逻辑订阅者由多个进程组成。作为一个多订阅系统,Kafka天生就支持对于给定的主题可以有任意数量的消费者组。

Automatic Offset Committing

1Propertiesprops=newProperties();2props.put("bootstrap.servers","192.168.1.128:9092");3props.put("group.id","test");4props.put("enable.auto.commit","true");5props.put("auto.commit.interval.ms","1000");6props.put("key.deserializer","org.apache.kafka.common.serialization.StringDeserializer");7props.put("value.deserializer","org.apache.kafka.common.serialization.StringDeserializer");8KafkaConsumer consumer =newKafkaConsumer(props);9consumer.subscribe(Arrays.asList("foo","bar"));10while(true) {11ConsumerRecords records = consumer.poll(100);12for(ConsumerRecord record : records) {13System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value());14}15}

设置enable.auto.commit意味着自动提交已消费的记录的offset

Manual Offset Control

代替消费者周期性的提交已消费的offsets,用户可以控制什么时候记录被认为是已经消费并提交它们的offsets。

1Properties props =newProperties();2props.put("bootstrap.servers","localhost:9092");3props.put("group.id","test");4props.put("enable.auto.commit","false");5props.put("key.deserializer","org.apache.kafka.common.serialization.StringDeserializer");6props.put("value.deserializer","org.apache.kafka.common.serialization.StringDeserializer");7KafkaConsumer consumer =newKafkaConsumer<>(props);8consumer.subscribe(Arrays.asList("foo","bar"));9finalintminBatchSize =200;10List>buffer=newArrayList<>();11while(true) {12ConsumerRecords records = consumer.poll(100);13for(ConsumerRecord record : records) {14buffer.add(record);15}16if(buffer.size() >= minBatchSize) {17insertIntoDb(buffer);18consumer.commitSync();19buffer.clear();20}21}

代码演示

服务器端

客户端

如果想学习Java工程化、高性能及分布式、深入浅出。微服务、Spring,MyBatis,Netty源码分析的朋友可以加我的Java高级交流:854630135,群里有阿里大牛直播讲解技术,以及Java大型互联网技术的视频免费分享给大家。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342

推荐阅读更多精彩内容

  • 本文转载自http://dataunion.org/?p=9307 背景介绍Kafka简介Kafka是一种分布式的...
    Bottle丶Fish阅读 5,424评论 0 34
  • 一、基本概念 介绍 Kafka是一个分布式的、可分区的、可复制的消息系统。它提供了普通消息系统的功能,但具有自己独...
    ITsupuerlady阅读 1,612评论 0 9
  • Kafka入门经典教程-Kafka-about云开发 http://www.aboutyun.com/threa...
    葡萄喃喃呓语阅读 10,798评论 4 54
  • kafka的定义:是一个分布式消息系统,由LinkedIn使用Scala编写,用作LinkedIn的活动流(Act...
    时待吾阅读 5,291评论 1 15
  • 4. 设计思想 4.1 动机 我们设计的 Kafka 能够作为一个统一的平台来处理大公司可能拥有的所有实时数据馈送...
    疯狂的橙阅读 1,066评论 1 4