SQL优化

SQL语句优化

  1. 对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。

  2. 应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描

     select id from t where num is null;
    

    可以在 num 上设置默认值 0,确保表中 num 列没有 null 值,然后这样查询:

     select id from t where num=0;
    
  3. 应尽量避免在 where 子句中使用!=或<、>操作符,否则将引擎放弃使用索引而进行全表扫描。

  4. 应尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描

     select id from t where num=10 or num=20;
    

    可以这样查询

     select id from t where num=10;
     select id from t where num=20;
    
  5. in 和 not in 也要慎用,否则会导致全表扫描,如:

     select id from t where num in(1,2,3);
    

    对于连续的数值,能用 between 就不要用 in 了:

     select id from t where num between 1 and 3;
    
  6. 下面的查询也将导致全表扫描:

     select id from t where name like '%c%';
    

    若要提高效率,可以考虑全文检索。

  7. 应尽量避免在 where 子句中对字段进行表达式操作, 这将导致引擎放弃使用索引而进行全表扫描。

     select id from t where num/2=100;
    

    可以这样查询:

     select id from t where num=100*2;
    
  8. 应尽量避免在 where 子句中对字段进行函数、算术运算或其他表达式运算,这将导致引擎放弃使用索引而进行全表扫描。如:

     select id from t where substring(name,1,3)='abc';#name 以 abc 开头的 id
    

    应改为:

     select id from t where name like 'abc%';
    
  9. 在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件 时才能保证系统使用该索引, 否则该索引将不会 被使用, 并且应尽可能的让字段顺序与索引顺序相一致。《最左前缀原则》

  10. 很多时候用 exists 代替 in 是一个好的选择:

    select num from a where num in(select num from b);
    

    用下面的语句替换:

    select num from a where exists(select * from b where num=a.num);
    
  11. 并不是所有索引对查询都有效,SQL 是根据表中数据来进行查询优化的,当索引列有大量数据重复时, SQL 查询可能不会去利用索引,如一表中有字段 sex,male、female 几乎各一半,那么即使在 sex 上建 了索引也对查询效率起不了作用。如status、sex等字段

  12. 索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过 6 个,若太多则应考虑一些不常使用到的列上建的索引是否有必要。

  13. 尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并 会增加存储开销。这是因为引擎在处理查询和连接时会逐个比较字符串中每一个字符,而对于数字型而言 只需要比较一次就够了。

  14. 任何地方都不要使用 select * from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段。

  15. 尽量避免大事务操作,提高系统并发能力。 sql 优化方法使用索引来更快地遍历表。

  16. 在海量查询时尽量少用格式转换。

  17. IN、OR 子句常会使用工作表,使索引失效。如果不产生大量重复值,可以考虑把子句拆开。拆开的子句中应该包含索引。

  18. 只要能满足你的需求,应尽可能使用更小的数据类型:例如使用 MEDIUMINT 代替 INT

  19. 当结果集只有一条数据时,使用limit 1。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342

推荐阅读更多精彩内容