MYsql 优化

数据库设计优化 :

1、数据库设计符合第三范式,为了查询方便可以有一定的数据冗余。
2、选择数据类型优先级 int > date,time > enum,char>varchar > blob,选择数据类型时,可以考虑替换,如ip地址可以用ip2long()函数转换为unsign int型来进行存储。
3、对于char(n)类型,在数据完整的情况下尽量较小的的n值。
4、在建表时用partition命令对单个表分区可以大大提升查询效率,MySQL支持RANGE,LIST,HASH,KEY分区类型,其中以RANGE最为常用,分区方式为:
  CREATE TABLE tablename{
  }ENGINE innodb/myisam CHARSET utf8 //选择数据库引擎和编码
  PARTITION BY RANGE/LIST(column),//按范围和预定义列表进行分区
  PARTITION partname VALUES LESS THAN /IN(n),//命名分区并详细限定分区的范围
5、选择数据库引擎时要注意innodb 和 myisam的区别。
  存储结构:MyISAM在磁盘上存储成三个文件。而InnoDB所有的表都保存在同一个数据文件中,一般为2GB
  事务支持:MyISAM不提供事务支持。InnoDB提供事务支持事务。
  表锁差异:MyISAM只支持表级锁。InnoDB支持事务和行级锁。
  全文索引:MyISAM支持 FULLTEXT类型的全文索引(不适用中文,所以要用sphinx全文索引引擎)。InnoDB不支持。
  表的具体行数:MyISAM保存有表的总行数,查询count(*)很快。InnoDB没有保存表的总行数,需要重新计算。
  外键:MyISAM不支持。InnoDB支持


索引优化 :

1、innodb是聚簇索引,存储是必须要有主键 ,如果没有主键 会默认生成一个 隐藏的主键,生成一个主索引。索引内存放的是主键的物理地址,数据靠主键存放,每次使用索引时要先找到主索引,然后找到主索引下的数据。

优点通过主键查找特别快,缺点是次级索引会变慢,因为需要先通过次级索引(次级索引里是主索引的位置。)找到主索引,然后通过主索引找数据。并且如果主键无规律,插入新值时需要移动较多数据块,会影响效率,所以要尽量使用有规律递增的int型做主键。还有因为数据紧跟着主键放,所以如果数据中有数据量特别大的列(text/blob),innodb查询时会跳过很多数据块,也会导致慢。

2、myisam的索引各个索引都相同统一指向磁盘上各个行的地址,都是轻量级的指针数据。缺点是各个索引的建立不是通过主键,查询没有聚簇索引查找主键快。但其因为存储的是地址,所以在插入新值时比较方面移动改变。

3、进行多条件查询时,对多条件分别建立索引时,执行sql查询时,MySQL只会选择一个最贴近的索引来使用,所以如果需要多条件查询,要建立联合索引,即使会造成数据冗余。
联合索引的BTREE建立方法:对第一个条件建立索引,在第一个索引的BTREE区域对第二个条件建立索引,以此类推,所以,在使用索引时,不用第一个条件用第二个条件也不会用到联合索引。使用索引时要条件要有顺序,有序列的使用。

4、索引长度对查询也有很大影响,我们应该尽量建立短的索引长度,我们可以使用查询列
SELECT COUNT(DISTINCT LEFT(column)) / COUNT(*) FROM tablename 来测试对column列建立索引时选取不同的长度,索引的覆盖率有多大,我们选择一下接近饱和的n个长度来建立索引
ALTER TABLE tablename ADD INDEX (column(n)); 来对某一列的前n个字符建立索引。若前n个字符相同,我们甚至可以对字符串进行反转存储,然后建立索引。

5、对于经常修改导致的索引碎片的维护方式:ALTER TABLE tablename ENGINE oldengine;即再次应用一下表存储引擎,使其自动维护;也可以用 OPTIMIZE tablename 命令来进行维护。

数据查询方面优化

数据库操作尽量少查询,有查询时尽量不在数据库层面上进行数据操作,而是返回到PHP脚本中操作数据,减轻数据库压力。

一旦发现有数据库性能问题,要及时解决,一般用慢查询日志记录查询很"慢"的语句,用EXPLAIN分析查询和索引使用情况,用PROFILE分析语句执行时的具体资源消耗。
慢查询日志:
1、在my.ini或my.cnf的[mysqld]下添加
slow_query_log_file=/path //设置日志存储路径
long_query_time=n //设置如果语句执行时间达到n秒,就会被记录下来
2、然后在MySQL里设置SET slow_query_log='ON'来开启慢查询。
3、记录下日志后,我们用/bin/目录下的mysqldumpslow filename来查看日志,其常用参数如下:
  -g pattern 使用正则表达式
  -t n返回前n条数据
  -s c/t/l/r 以记录次数/时间/查询时间/返回记录数来排序

EXPLAIN语句
使用方法,在要执行的查询语句前面加EXPLAIN
EXPLAIN SELECT * FROM user;
得到形如下图的结果:


819496-20151128091516734-983350832.png

下面是对每一项的解释:
id: 查询语句的id,简单查询无意义,多重查询时可以看出执行查询的顺序
select-type: 执行的查询语句的类型,对应多重查询,有simple/primary/union等。
tabel :查询语句查询的数据表
type : 获得数据的类型 常见的类型效率从高到低为 null>const>eq_ref>ref>range>index>all
possible-keys:可能使用到的索引
key: 使用到的索引
key_len:索引长度
ref :使用哪个列与索引一起从表中选择。
rows :查找到数据要扫描的大概行数,可看出索引的优劣
extra : 常见的有
using filesort :查询到数据后进行文件排序,较慢,需要优化索引
using where :读取整行数据后进行判断过滤,是否符合where条件
using index :索引覆盖,即在牵引中已经有这存储了目标数据,直接读取索引,很快。

PROFILE
用SELECT @@frofiling来查看PROFILE的开启状态。
如果未开启,用SET profiling=1来开启。
开启之后,再执行查询语句,MySQL会自动记录profile信息。
应用show profiles查看所有的sql信息,结果为 Query_ID Duration Query三列结果,分别是查询ID,用时和所用的sql语句。
我们可以使用
SHOW PFROFILE [type[,type]][FOR QUREY Query_ID][Limit rwo_count [OFFSET offset]]
type常见有ALL(全部) BLOCK IO(显示IO相关开销) CPU(CPU开销) MEMORY(内存开销)等

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,009评论 5 474
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 84,808评论 2 378
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 148,891评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,283评论 1 272
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,285评论 5 363
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,409评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,809评论 3 393
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,487评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,680评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,499评论 2 318
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,548评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,268评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,815评论 3 304
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,872评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,102评论 1 258
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,683评论 2 348
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,253评论 2 341

推荐阅读更多精彩内容