Akka系列(九):Akka分布式之Akka Remote

Akka作为一个天生用于构建分布式应用的工具,当然提供了用于分布式组件即Akka Remote,那么我们就来看看如何用Akka Remote以及Akka Serialization来构建分布式应用。

背景

很多同学在程序的开发中都会遇到一个问题,当业务需求变得越来越复杂,单机服务器已经不足以承载相应的请求的时候,我们都会考虑将服务部署到不同的服务器上,但服务器之间可能需要相互调用,那么系统必须拥有相互通信的接口,用于相应的数据交互,这时候一个好的远程调用方案是一个绝对的利器,主流的远程通信有以下几种选择:

  • RPC(Remote Procedure Call Protocol)
  • Web Service
  • RMI (Remote Method Invocation)
  • JMS(Java Messaging Service)

这几种方式都是被采用比较广泛的通信方案,有兴趣的同学可以自己去了解一下,这里我会讲一下RMI和JMS。

JAVA远程调用

RMI和JMS相信很多写过Java程序的同学都知道,是Java程序用来远程通信的主要方式,那么RMI和JMS又有什么区别呢?

1.RMI

i.特征:
  • 同步通信:在使用RMI调用远程方法时,线程会持续等待直到结果返回,所以它是一个同步阻塞操作;
  • 强耦合:请求的系统中需要使用的RMI服务进行接口声明,返回的数据类型有一定的约束;
ii.优点:
  • 实现相对简单,方法调用形式通俗易理解,接口声明服务功能清晰。
iii.缺点:
  • 只局限支持JVM平台;
  • 对无法兼容Java语言的其他语言也不适用;

2.JMS

i.特征:
  • 异步通信:JMS发送消息进行通信,在通信过程中,线程不会被阻塞,不必等待请求回应,所以是一个异步操作;
  • 松耦合:不需要接口声明,返回的数据类型可以是各种各样,比如JSON,XML等;
ii.通信方式:

(1)点对点消息传送模型

顾名思义,点对点可以理解为两个服务器的定点通信,发送者和接收者都能明确知道对方是谁,大致模型如下:

jms-point-to-point.png

(2)发布/订阅消息传递模型

点对点模型有些场景并不是很适用,比如有一台主服务器,它产生一条消息需要让所有的从服务器都能收到,若采用点对点模型的话,那主服务器需要循环发送消息,后续若有新的从服务器增加,还要改主服务器的配置,这样就会导致不必要的麻烦,那么发布/订阅模型是怎么样的呢?其实这种模式跟设计模式中的观察者模式很相似,相信很多同学都很熟悉,它最大的特点就是较松耦合,易扩展等特点,所以发布/订阅模型的大致结构如下:

jms-topic.png
iii.优点:
  • 由于使用异步通信,不需要线程暂停等待,性能相对较高。
iiii.缺点:
  • 技术实现相对复杂,并需要维护相关的消息队列;

更通俗的说:

RMI可以看成是用打电话的方式进行信息交流,而JMS更像是发短信。

总的来说两种方式没有孰优孰劣,我们也不用比较到底哪种方式比较好,存在即合理,更重要的是哪种选择可能更适合你的系统。

Akka Remote

上面讲到JAVA中远程通信的方式,但我们之前说过Akka也是基于JVM平台的,那么它的通信方式又有什么不同呢?

在我看来,Akka的远程通信方式更像是RMI和JMS的结合,但更偏向于JMS的方式,为什么这么说呢,我们先来看一个示例:

我们先来创建一个远程的Actor:

class RemoteActor extends Actor {
  def receive = {
    case msg: String =>
      println(s"RemoteActor received message '$msg'")
      sender ! "Hello from the RemoteActor"
  }
}

现在我们在远程服务器上启动这个Actor:

val system = ActorSystem("RemoteDemoSystem")
val remoteActor = system.actorOf(Props[RemoteActor], name = "RemoteActor")

那么现在我们假如有一个系统需要向这个Actor发送消息应该怎么做呢?

首先我们需要类似RMI发布自己的服务一样,我们需要为其他系统调用远程Actor提供消息通信的接口,在Akka中,设置非常简单,不需要代码侵入,只需简单的在配置文件里配置即可:

akka {
  actor {
    provider = "akka.remote.RemoteActorRefProvider"
  }
  remote {
    enabled-transports = ["akka.remote.netty.tcp"]
    netty.tcp {
      hostname = $localIp  //比如127.0.0.1
      port = $port //比如2552
    }
    log-sent-messages = on
    log-received-messages = on
  }
}

我们只需配置相应的驱动,传输方式,ip,端口等属性就可简单完成Akka Remote的配置。

当然本地服务器也需要配置这些信息,因为Akka之间是需要相互通信的,当然配置除了hostname有一定的区别外,其他配置信息可一致,本例子是在同一台机器上,所以这里hostname是相同的。

这时候我们就可以在本地的服务器向这个Actor发送消息了,首先我们可以创建一个本地的Actor:

case object Init
case object SendNoReturn

class LocalActor extends Actor{

  val path = ConfigFactory.defaultApplication().getString("remote.actor.name.test")
  implicit val timeout = Timeout(4.seconds)
  val remoteActor = context.actorSelection(path)

  def receive: Receive = {
    case Init => "init local actor"
    case SendNoReturn => remoteActor ! "hello remote actor"
  }
}

其中的remote.actor.name.test的值为:“akka.tcp://RemoteDemoSystem@127.0.0.1:4444/user/RemoteActor”,另外我们可以看到我们使用了context.actorSelection(path)来获取的是一个ActorSelection对象,若是需要获得ActorRef,我们可以调用它的resolveOne(),它返回的是是一个Future[ActorRef],这里是不是很熟悉,因为它跟本地获取Actor方式是一样的,因为Akka中Actor是位置透明的,获取本地Actor和远程Actor是一样的。

最后我们首先启动远程Actor的系统:

object RemoteDemo extends App  {
  val system = ActorSystem("RemoteDemoSystem")
  val remoteActor = system.actorOf(Props[RemoteActor], name = "RemoteActor")
  remoteActor ! "The RemoteActor is alive"
}

然后我们在本地系统中启动这个LocalActor,并向它发送消息:

object LocalDemo extends App {

  implicit val system = ActorSystem("LocalDemoSystem")
  val localActor = system.actorOf(Props[LocalActor], name = "LocalActor")

  localActor ! Init
  localActor ! SendNoReturn
}

我们可以看到RemoteActor收到了一条消息:

send-no-return.png

从以上的步骤和结果看出可以看出,Akka的远程通信跟JMS的点对点模式似乎更相似一点,但是它有不需要我们维护消息队列,而是使用Actor自身的邮箱,另外我们利用context.actorSelection获取的ActorRef,可以看成远程Actor的副本,这个又和RMI相关概念类似,所以说Akka远程通信的形式上像是RMI和JMS的结合,当然底层还是通过TCP、UDP等相关网络协议进行数据传输的,从配置文件的相应内容便可以看出。

上述例子演示的是sendNoReturn的模式,那么假如我们需要远程Actor给我们一个回复应该怎么做呢?

首先我们创建一个消息:

case object SendHasReturn

 def receive: Receive = {
    case SendHasReturn =>
      for {
        r <- remoteActor.ask("hello remote actor")
      } yield r
  }

我们重新运行LocalActor并像RemoteActor发送一条消息:

send-has-return.png

可以看到LocalActor在发送消息后并收到了RemoteActor返回来的消息,另外我们这里设置了超时时间,若在规定的时间内没有得到反馈,程序就会报错。

Akka Serialization

其实这一部分本可以单独拿出来写,但是相信序列化这块大家都应该有所了解了,所以就不准备讲太多序列化的知识了,怕班门弄斧,主要讲讲Akka中的序列化。

继续上面的例子,假如我们这时向RemoteActor发送一个自定义的对象,比如一个case class对象,但是我们这是是在网络中传输这个消息,那么怎么保证这个对象类型和值呢,在同一个JVM系统中我们不需要担心这个,因为对象就在堆中,我们只要传递相应的地址即可就行,但是在不同的环境中,我们并不能这么做,我们在网络中只能传输字节数据,所以我们必须将对象做特殊的处理,在传输的时候转化成特定的由一连串字节组成的数据,而且我们又可以根据这些数据恢复成一个相应的对象,这便是序列化。

我们先定义一个参与的case class, 并修改一下上面发送消息的语句:

case object SendSerialization
case class JoinEvt(
    id: Long,
    name: String
)
def receive: Receive = {
    case SendSerialization =>
      for {
        r <- remoteActor.ask(JoinEvt(1L,"godpan"))
      } yield println(r)
  }

这时我们重新启动RemoteActor和LocalActor所在的系统,发送这条消息:

send-serialization.png

有同学可能会觉得奇怪,我们明明没有对JoinEvt进行过任何序列化的标识和处理,为什么程序还能运行成功呢?

其实不然,只不过是有人替我们默认做了,不用说,肯定是贴心的Akka,它为我们提供了一个默认的序列化策略,那就是我们熟悉又纠结的java.io.Serializable,沉浸在它的易使用性上,又对它的性能深恶痛绝,尤其是当有大量对象需要传输的分布式系统,如果是小系统,当我没说,毕竟存在即合理。

又有同学说,既然Akka是一个天生分布式组件,为什么还用低效的java.io.Serializable,你问我我也不知道,可能当时的作者偷了偷懒,当然Akka现在可能觉醒了,首先它支持第三方的序列化工具,当然如果你有特殊需求,你也可以自己实现一个,而且在最新的文档中说明,在Akka 2.5x之后Akka内核消息全面废弃java.io.Serializable,用户自定义的消息暂时还是支持使用java.io.Serializable的,但是不推荐用,因为它是低效的,容易被攻击,所以在这里我也推荐大家再Akka中尽量不要在使用了java.io.Serializable。

那么在Akka中我们如何使用第三方的序列化工具呢?

这里我推荐一个在Java社区已经久负盛名的序列化工具:kryo,有兴趣的同学可以去了解一下:kryo,而且它也提供Akka使用的相关包,这里我们就使用它作为示例:

这里我贴上整个项目的build.sbt, kryo的相关依赖也在里面:


import sbt._
import sbt.Keys._

lazy val AllLibraryDependencies =
  Seq(
    "com.typesafe.akka" %% "akka-actor" % "2.5.3",
    "com.typesafe.akka" %% "akka-remote" % "2.5.3",
    "com.twitter" %% "chill-akka" % "0.8.4"
  )

lazy val commonSettings = Seq(
  name := "AkkaRemoting",
  version := "1.0",
  scalaVersion := "2.11.11",
  libraryDependencies := AllLibraryDependencies
)

lazy val remote = (project in file("remote"))
  .settings(commonSettings: _*)
  .settings(
    // other settings
  )

lazy val local = (project in file("local"))
  .settings(commonSettings: _*)
  .settings(
    // other settings
  )

然后我们只需将application.conf中的actor配置替换成以下的内容:

actor {
    provider = "akka.remote.RemoteActorRefProvider"
    serializers {
      kryo = "com.twitter.chill.akka.AkkaSerializer"
    }
    serialization-bindings {
      "java.io.Serializable" = none
      "scala.Product" = kryo
    }
  }

其实其中的"java.io.Serializable" = none可以省略,因为若是有其他序列化的策略则会替换掉默认的java.io.Serializable的策略,这里只是为了更加仔细的说明。

至此我们就可以使用kryo了,整个过程是不是很easy,迫不及待开始写demo了,那就快快开始吧。

整个例子的相关的源码已经上传到akka-demo中:源码链接

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,529评论 5 475
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,015评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,409评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,385评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,387评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,466评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,880评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,528评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,727评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,528评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,602评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,302评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,873评论 3 306
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,890评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,132评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,777评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,310评论 2 342

推荐阅读更多精彩内容

  • 3.4 Spark通信机制 前面介绍过,Spark的部署模式可以分为local、standalone、Mesos、...
    Albert陈凯阅读 1,065评论 0 1
  • Spring Cloud为开发人员提供了快速构建分布式系统中一些常见模式的工具(例如配置管理,服务发现,断路器,智...
    卡卡罗2017阅读 134,579评论 18 139
  • 1. Java基础部分 基础部分的顺序:基本语法,类相关的语法,内部类的语法,继承相关的语法,异常的语法,线程的语...
    子非鱼_t_阅读 31,555评论 18 399
  • 七绝 • 雅居春晓 李雷 半窗明月满庭芳, 一榻清风四壁香。 蘸取青山雄画笔, 舀泼云水润诗章。 ...
    子雷2017阅读 838评论 24 24
  • #伤非# 奇妙的是有的人就在你身边 却经久不见 仿佛隔着一个世界 有的人隔着大半个中国却相交陌逆 仿佛只有一墙之隔...
    萨摩罗阅读 630评论 0 1