Flink CookBook- JDBC Table Source并发详解

    Flink在读取JDBC表时,为了加快速度,通常可以并发的方式读取,只需要增加以下几个参数:

'connector.read.partition.column'='id','connector.read.partition.lower-bound'='1','connector.read.partition.upper-bound'='1000','connector.read.partition.num'='10'

column:分区字段

lower-bound:分区字段值的下界

upper-bound:分区字段值的上界

num:分区数

根据以上参数,可以确定总的记录数(maxElemCount=maxVal-minVal),然后再基于分区数计算每个分区将要fetch的记录数(batchSize=maxElemCount / batchNum),即分区步长,接下来就是计算每个分区数据边界,算法很简单:

需要注意的是,分区列的最大值和最小值会作为过滤条件,因此如果设置的不合理,会导致数据查询不完整。

    在Sqoop中,从mysql import,如果指定了并发数,即map  task数,也要按照一定的分区方法,将数据split到多个map里。sqoop的算法和Flink的算法类似,本质上都是要对数据进行合理分片、分到多个task。sqoop算法如下,numSplits是数据分区数,同时也是map task数:

JDBC Table Source执行时,会先把split绑定到task、设置PreparedStatement where条件,接下来就是循环遍历ResultSet结果集了:

      我们还要关注下算子的并行度,因为算子的并行度和数据的分区还是不一样的,所以这里还有一步,怎么把分区数据分配给并行化的算子。算子没有设置并行度时,就用默认并行度:

int vertexParallelism = jobVertex.getParallelism();int numTaskVertices = vertexParallelism > 0 ? vertexParallelism : defaultParallelism;

    如果算子并行度设置的比分区数大,会有subtask空跑的情况,如果并行度设置的比分区数小,会有一个或多个subtask读取多个分区的情况。

    Sqoop和Flink不同的一个点是,分区列的最大、最小值是运行时决定的,不是指定的,就是说sqoop开始执行时,会根据指定的sql查询出最值;而且sqoop的map task数就是分区数,不会有一个map拉取多个分区数据或一个map没有拉取到分区数据的情况。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,009评论 5 474
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 84,808评论 2 378
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 148,891评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,283评论 1 272
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,285评论 5 363
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,409评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,809评论 3 393
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,487评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,680评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,499评论 2 318
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,548评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,268评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,815评论 3 304
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,872评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,102评论 1 258
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,683评论 2 348
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,253评论 2 341

推荐阅读更多精彩内容