Datawhale 知识图谱组队学习 Task 1 Neo4J介绍与基本使用

知识图谱由于其数据包含实体、属性、关系等,常见的关系型数据库诸如MySQL之类不能很好的体现数据的这些特点,因此知识图谱数据的存储一般是采用图数据库(Graph Databases)。而Neo4j是其中最为常见的图数据库。

安装JDK

https://www.injdk.cn/,根据自己需求下载,注意:社区版4.2.2需要jdk版本为jdk11

JDK下载

安装完成中选择将其添加到PATH

安装完成后在命令行测试java和javac


安装Neo4J

首先在 https://neo4j.com/download-center/ 下载Neo4J。Neo4J分为社区版和企业版,企业版在横向扩展、权限控制、运行性能、HA等方面都比社区版好,适合正式的生产环境,普通的学习和开发采用免费社区版就好。

image.png

在Mac或者Linux中,安装好jdk后,直接解压下载好的Neo4J包,运行命令bin/neo4j start
windows系统下载好neo4j和jdk 1.8.0后,输入以下命令启动neo4j.bat console

注:上面的命令需要在bin目录下执行,如果想打开命令行就可以使用,请添加环境变量



使用Neo4J

Neo4J默认的图形化地址是bolt://localhost:7474,浏览器打开后填写默认用户neo4j,默认密码neo4j,第一次成功登陆到Neo4j服务器之后,需要重置密码。登录成功后界面

image.png

Neo4J实战教程

官方文档

创建节点

CREATE (<node-name>:<label-name>)

CREATE (
   <node-name>:<label-name>
   {    
      <Property1-name>:<Property1-Value>
      ........
      <Propertyn-name>:<Propertyn-Value>
   }
)

CREATE (<node1-details>)-[<relationship-details>]->(<node2-details>)
# 关系必须有方向

CREATE (n:Person { name: 'Andy', title: 'Developer' })

匹配节点

match用来匹配图数据库中的节点,如match (n:Person) return n.name,返回所有节点为Person标签的名字

创建关系

MERGE can be used to match or create a relationship.
MATCH (a:Person {name:'Shawn'}), (b:Person {name:'Sally'}) MERGE (a)-[:FRIENDS {since:2001}]->(b)

删除和修改

MATCH (a:Person {name:'Liz'}) SET a.age=34//增加/修改节点的属性
MATCH (a:Person {name:'Mike'}) REMOVE a.test//删除节点的属性
MATCH (a:Location {city:'Portland'}) DELETE a //删除节点

通过 Python 操作 Neo4j

 # step 1:导包
  from py2neo import Graph, Node, Relationship
  # step 2:构建图
  g = Graph()
  # step 3:创建节点
  tx = g.begin()
  a = Node("Person", name="Alice")
  tx.create(a)
  b = Node("Person", name="Bob")
  # step 4:创建边
  ab = Relationship(a, "KNOWS", b)
  # step 5:运行
  tx.create(ab)
  tx.commit()

Neo4j之导入CSV数据

https://zhuanlan.zhihu.com/p/93746655
参考:
https://blog.seoui.com/2019/08/23/neo4j_study/#%E7%AC%AC%E4%B8%89%E7%AB%A0%EF%BC%9ACQL
https://zhuanlan.zhihu.com/p/88745411
https://github.com/datawhalechina/team-learning-nlp/blob/master/KnowledgeGraph_Basic/task01.md#44-neo4j-web-%E7%95%8C%E9%9D%A2-%E4%BB%8B%E7%BB%8D

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342

推荐阅读更多精彩内容