Introduction

1.CNN Locale keypoint
2.Light CNN general design
3.Scale Var Light CNN design

1. CNN Locale keypoint

LF-Net 和 RF-Net都在局部特征点的精度上取得了很高的成绩,但是这些网络的速度远达不到机器人SLAM实时使用的程度。
受到近年来轻量级网络设计的启发,我们在LF-Net 和 RF-Net基础上改进了网络结构,面对通道信息沟通不畅问题,我们借鉴了ShuffleNetV2的思想 ,有效提高了精度和速度。
针对LF-Net 和 RF-Net都存在的尺度空间上不平衡的问题,我们改进了提取尺度方式,得到了有效的解决。
最终我们的成果能够实际应用在SLAM系统中,并具有很高的精度和鲁棒性。

2. Light CNN general design

"Tuning deep neural architectures to strike an optimal balance between accuracy and performance has been an area of active research for the last several years."
To achieve this goal generally there are two approaches, one is to compress pretrained networks which called Model Compression the other is to directly design small networks.
Recently there has been many achievements in faster convolutional blocks, Including SqueezeNet, MobileNetV1/2, ShuffleNetV1/2, IGC v1/v2/v3.
The direct metric depends on many factors such as memory access cost, ...

2.1 Depthwise Separable Convolutions

The basic idea about Depthwise Separable Convolutions is that a full convolutional operator can be split into two separate layers : a depthwise convolution and a 1X1 convolution which called pointwise convolution.

Traditional convolutional operater apply a K*K size kernal to filter all input feature maps, thus each feature map of the output maps contain information from all maps of the input map. For example consider input is a W X H X C size maps, we want output to be W X H X K size, we apply 3 X 3 X K shape convolution kernal, the operation is :


Depthwise separable convolutions are a drop-in replacement for standard convolutional layers.
Firstly, we do a channel-by-channel convolution (Depth-wise convolution), which means for the input feature maps one channel is only filtered by one convolution kernal.
Secondly, after Depth-wise convolution the feature maps are seperated by channels,because "Each feature map of the output maps should contain information from all other maps of the input layer" we do Pointwise convolution
to help output maps exchange information. Pointwise convolution is simplely a 1X1 convolution.

Depthwise Separable Convolutions can not only reduce network parameters but also drop computation costs.

Convolution Size : D_K
Input Channels : M
Output Channels : N
Output feature map size : D_F

Tradition convolution:

parameters:

computation:

Depthwise separable convolution:

parameters:

computation:

So the computational complexity decreases to the original:

2.2 MobileNet

The main idea about MobileNet is :

  1. Use depth-wise convolution operation. Compared with standard convolution operation, under the same parameter number , it can reduce the amount of calculation by several times, so as to improve the speed of network.
  2. To solve the "poor information flow" problem of using depth-wise convolution, MobileNet uses point-wise convolution.

2.3 MobileNet V2

MobileNet V2 mainly solves the problem that V1 is easily degraded in training process, so V2 has improvement compared with V1.

2.4 ShuffleNet

Use group convolution and channel shuffle, thus reduce the cost of 1X1 convolution in MobileNet.
To solve the proble “outputs from a certain channel are only derived from a small fraction of input channels.“
Channel shuffle is as shown below:

Channel shuffle's operation is simple. Like ResNet architecture ShuffleNet create the basic bottleneck unit, and then uses basic bottleneck units stacked to obtain ShuffleNet.

The main contributions in this artical are as follows:

  1. Like MobileNet, depth-wise convolution is adopted in ShuffleNet, but it uses a channel shuffle operation to solve the side effect of depth-wise convolution.
  2. It is critical that tiny networks usually have an insufficient number of channels to process the information.
  3. In terms of network topology, ShuffleNet adopts the idea of resnet, while mobielnet adopts the idea of VGG.

2.5 ShuffleNet V2

Comparison Module Design of ShuffleNet_V2 and ShuffleNet_V1:

ShuffleNet_V2的模块设计与ShuffleNet_V1的对比

ShuffleNet V2 abandons the 1x1 group convolution operation and directly uses 1x1 ordinary convolution with the same number of input/output channels. It also proposes a new Channel-Split operation, which divides the input channels of module into two parts, one part is passed down directly, the other part is calculated backwards. At the end of module, the output channels from two branches are connected directly, thus avoiding the operation of Element-wise sum in ShuffleNet v1. Then we do the Random Shuffle operation on the output feature maps to get the final output, so that the information between the channels can communicate with each other.

2.6 Conclusion

  • Use Depthwise Separable Convolutions to speed Network
  • Find ways to solve channel information exchange

3. Multi-Scale CNN design

  • 图像级别金字塔
  • Feature Map 级别金字塔
  • Backbone 金字塔
  • 多种融合
(a) No method. (b) Backbone pyramids. (e.g., SSD). (c) Feature pyramids (e.g., FPN). (d) Image pyramids (e.g., SNIP). (e) Image and feature pyramids. (e.g. TridentNet)

LF-Net, RF-Net use feature pyramids
LIFT, Key.Net use image pyramids
SuperPoint, D2-Net do not use scale

LF-Net and RF-Net both achieve high accuracy in Locale keypoints detection and description. but they are very slow and has some problems.

SE是一个注意力机制,就相当于给每一个Feature map一个权重。首先通过一个Avgpool得到一个一维的向量,元素个数和Feature map数目一样。然后两个带ReLU的全连接层,最后加一个带h-sigmoid的全连接层。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,529评论 5 475
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,015评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,409评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,385评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,387评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,466评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,880评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,528评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,727评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,528评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,602评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,302评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,873评论 3 306
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,890评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,132评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,777评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,310评论 2 342

推荐阅读更多精彩内容