Python Tricks - Pythonic Productivity Techniques(2)

Peeking Behind the Bytecode Curtain

When the CPython interpreter executes your program, it first translates it into a sequence of bytecode instructions. Bytecode is an intermediate language for the Python virtual machine that’s used as a performance optimization.

Instead of directly executing the human-readable source code, compact numeric codes, constants, and references are used that represent the result of compiler parsing and semantic analysis.

This saves time and memory for repeated executions of programs or parts of programs. For example, the bytecode resulting from this compilation step is cached on disk in .pyc and .pyo files so that executing the same Python file is faster the second time around.
意思就是偏向于机器码的速度更快

All of this is completely transparent to the programmer. You don’t have to be aware that this intermediate translation step happens, or how the Python virtual machine deals with the bytecode. In fact, the bytecode format is deemed an implementation detail and not guaranteed to remain stable or compatible between Python versions.

And yet, I find it very enlightening to see how the sausage is made and to peek behind the abstractions provided by the CPython interpreter. Understanding at least some of the inner workings can help you write more performant code (when that’s important). And it’s also a lot of fun.

Let’s take this simple greet() function as a lab sample we can play with and use to understand Python’s bytecode:

def greet(name):
  return 'Hello, ' + name + '!'
>>> greet('Guido')
'Hello, Guido!'

Remember how I said that CPython first translates our source code into an intermediate language before it “runs” it? Well, if that’s true, we should be able to see the results of this compilation step. And we can.

Each function has a __code__ attribute (in Python 3) that we can use to get at the virtual machine instructions, constants, and variables used by our greet function:

>>> greet.__code__.co_code
b'dx01|x00x17x00dx02x17x00Sx00'
>>> greet.__code__.co_consts
(None, 'Hello, ', '!')
>>> greet.__code__.co_varnames
('name',)

You can see co_consts contains parts of the greeting string our function assembles. Constants and code are kept separate to save memory space. Constants are, well, constant-meaning they can never be modified and are used interchangeably in multiple places.

So instead of repeating the actual constant values in the co_code instruction stream, Python stores constants separately in a lookup table. The instruction stream can then refer to a constant with an index into the lookup table. The same is true for variables stored in the co_varnames field.
python将常量分别存储在查询表里。我们可以通过索引来通过查询表查找常量。我们可以通过co_varnames来查找存储的变量。

I hope this general concept is starting to become more clear. But looking at the co_code instruction stream still makes me feel a little queasy. This intermediate language is clearly meant to be easy to work with for the Python virtual machine, not humans. After all, that’s what the text-based source code is for.

The developers working on CPython realized that too. So they gave us another tool called a disassembler to make inspecting the bytecode easier.

Python’s bytecode disassembler lives in the dis module that’s part of the standard library. So we can just import it and call dis.dis() on our greet function to get a slightly easier-to-read representation of its bytecode:

>>> import dis
>>> dis.dis(greet)
  2   0 LOAD_CONST 1 ('Hello, ')
        2 LOAD_FAST 0 (name)
        4 BINARY_ADD
        6 LOAD_CONST 2 ('!')
        8 BINARY_ADD
        10 RETURN_VALUE

The main thing disassembling did was split up the instruction stream and give each opcode in it a human-readable name like LOAD_CONST.

You can also see how constant and variable references are now interleaved with the bytecode and printed in full to spare us the mental gymnastics of a co_const or co_varnames table lookup. Neat!

Looking at the human-readable opcodes, we can begin to understand how CPython represents and executes the 'Hello, ' + name + '!' expression in the original greet() function.

It first retrieves the constant at index 1 ('Hello, ') and puts it on the stack. It then loads the contents of the name variable and also puts them on the stack.

The stack is the data structure used as internal working storage for the virtual machine. There are different classes of virtual machines and one of them is called a stack machine. CPython’s virtual machine is an implementation of such a stack machine. If the whole thing is named after the stack, you can imagine what a central role this data structure plays.

By the way—I’m only touching the surface here. If you’re interested in this topic you’ll find a book recommendation at the end of this chapter. Reading up on virtual machine theory is enlightening (and a ton of fun).

What’s interesting about a stack as an abstract data structure is that, at the bare minimum, it only supports two operations: push and pop. Push adds a value to the top of the stack and pop removes and returns the topmost value. Unlike an array, there’s no way to access elements “below” the top level.

I find it fascinating that such a simple data structure has so many uses. But I’m getting carried away again…

Let’s assume the stack starts out empty. After the first two opcodes have been executed, this is what the contents of the VM stack look like (0 is the topmost element):

0: 'Guido' (contents of "name")
1: 'Hello, '

Then there’s another LOAD_CONST to get the exclamation mark string on the stack:

0: '!'
1: 'Hello, Guido'

The next BINARY_ADD opcode again combines the two to generate the final greeting string:

0: 'Hello, Guido!'

The last bytecode instruction is RETURN_VALUE which tells the virtual machine that what’s currently on top of the stack is the return value for this function so it can be passed on to the caller.

And voila, we just traced back how our greet() function gets executed internally by the CPython virtual machine. Isn’t that cool?

There’s much more to say about virtual machines, and this isn’t the book for it. But if this got you interested, I highly recommend that you do some more reading on this fascinating subject.

It can be a lot of fun to define your own bytecode languages and to build little virtual machine experiments for them. A book on this topic that I’d recommend is Compiler Design: Virtual Machines by Wilhelm and Seidl.

Key Takeaways
  • CPython executes programs by first translating them into an intermediate bytecode and then running the bytecode on a stackbased virtual machine.
  • You can use the built-in dis module to peek behind the scenes and inspect the bytecode.
  • Study up on virtual machines—it’s worth it.
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,230评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,261评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,089评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,542评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,542评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,544评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,922评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,578评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,816评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,576评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,658评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,359评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,937评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,920评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,156评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,859评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,381评论 2 342

推荐阅读更多精彩内容